Department of Theoretical Biophysics, Max Planck Institute of Biophysics , 60438 Frankfurt am Main, Germany.
Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt , 60438 Frankfurt am Main, Germany.
J Am Chem Soc. 2017 Aug 30;139(34):11674-11677. doi: 10.1021/jacs.7b05363. Epub 2017 Aug 17.
Pulsed electron-electron double resonance (PELDOR/DEER) experiments of nucleic acids with rigid spin labels provide highly accurate distance and orientation information. Here we combine PELDOR experiments with molecular dynamics (MD) simulations to arrive at an atomistic view of the conformational dynamics of DNA. The MD simulations closely reproduce the PELDOR time traces, and demonstrate that bending, in addition to twist-stretch motions, underpin the sub-μs dynamics of DNA. PELDOR experiments correctly rank DNA force fields and resolve subtle differences in the conformational ensembles of nucleic acids, on the order of 1-2 Å. Long-range distance and angle measurements with rigid spin labels provide critical input for the refinement of computer models and the elucidation of the structure and dynamics of complex biomolecules.
采用刚性自旋标记物的脉冲电子-电子双共振(PELDOR/DEER)实验可提供高度精确的距离和取向信息。在这里,我们将 PELDOR 实验与分子动力学(MD)模拟相结合,以获得 DNA 构象动力学的原子级视图。MD 模拟紧密再现了 PELDOR 时间轨迹,并证明了弯曲(除了扭转-拉伸运动)是 DNA 亚微秒动力学的基础。PELDOR 实验可正确对 DNA 力场进行排序,并解析核酸构象系综之间的细微差异,差异在 1-2Å 左右。采用刚性自旋标记物的长程距离和角度测量为计算机模型的细化以及复杂生物分子的结构和动力学的阐明提供了关键输入。