Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University, Bonn, Germany.
Methods Mol Biol. 2022;2439:241-274. doi: 10.1007/978-1-0716-2047-2_16.
In the past decades, pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) has emerged as a powerful tool in biophysical chemistry to study the structure, dynamics, and function of biomolecules like oligonucleotides and proteins. Structural information is obtained from PDS methods in form of a distribution of distances between spin centers. Such spin centers can either be intrinsically present paramagnetic metal ions and organic radicals or may be attached to the biomolecule by means of site-directed spin labeling. The most common PDS experiment for probing interspin distances in the nanometer range is pulsed electron-electron double resonance (PELDOR or DEER). In the protocol presented here, we provide a step-by-step workflow on how to set up a PELDOR experiment on a commercially available pulsed EPR spectrometer, outline the data analysis, and highlight potential pitfalls. We suggest PELDOR measurements on nitroxide-labeled oligonucleotides to study the structure of either RNA-cleaving DNAzymes in complex with their RNA targets or modified DNAzymes with different functions and targets, in which deoxynucleotides are substituted by nitroxide-labeled nucleotides.
在过去的几十年中,脉冲双电子顺磁共振波谱(Pulsed Dipolar Electron Paramagnetic Resonance Spectroscopy,PDS)已成为生物物理化学领域中研究寡核苷酸和蛋白质等生物分子结构、动态和功能的强大工具。通过 PDS 方法,可以获得自旋中心之间距离分布的结构信息。这些自旋中心可以是固有存在的顺磁金属离子和有机自由基,也可以通过定点自旋标记附着在生物分子上。用于探测纳米范围内自旋间距离的最常见 PDS 实验是脉冲电子-电子双共振(Pulsed Electron-Electron Double Resonance,PELDOR 或 DEER)。在本方案中,我们提供了一个分步工作流程,介绍如何在市售的脉冲 EPR 光谱仪上设置 PELDOR 实验,概述数据分析,并强调潜在的陷阱。我们建议使用氮氧自由基标记的寡核苷酸进行 PELDOR 测量,以研究与 RNA 靶标结合的 RNA 切割 DNA 酶或具有不同功能和靶标的修饰 DNA 酶的结构,其中脱氧核苷酸被氮氧自由基标记的核苷酸取代。