Suppr超能文献

界面处的细菌薄膜。

Films of bacteria at interfaces.

机构信息

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Adv Colloid Interface Sci. 2017 Sep;247:561-572. doi: 10.1016/j.cis.2017.07.016. Epub 2017 Jul 19.

Abstract

Bacteria are often discussed as active colloids, self-propelled organisms whose collective motion can be studied in the context of non-equilibrium statistical mechanics. In such studies, the behavior of bacteria confined to interfaces or in the proximity of an interface plays an important role. For instance, many studies have probed collective behavior of bacteria in quasi two-dimensional systems such as soap films. Since fluid interfaces can adsorb surfactants and other materials, the stress and velocity boundary conditions at interfaces can alter bacteria motion; hydrodynamic studies of interfaces with differing boundary conditions are reviewed. Also, bacteria in bulk can become trapped at or near fluid interfaces, where they colonize and form structures comprising secretions like exopolysaccharides, surfactants, living and dead bacteria, thereby creating Films of Bacteria at Interfaces (FBI). The formation of FBI is discussed at air-water, oil-water, and water-water interfaces, with an emphasis on film mechanics, and with some allusion to genetic functions guiding bacteria to restructure fluid interfaces. At air-water interfaces, bacteria form pellicles or interfacial biofilms. Studies are reviewed that reveal that pellicle material properties differ for different strains of bacteria, and that pellicle physicochemistry can act as a feedback mechanism to regulate film formation. At oil-water interfaces, a range of FBI form, depending on bacteria strain. Some bacteria-laden interfaces age from an initial active film, with dynamics dominated by motile bacteria, through viscoelastic states, to form an elastic film. Others remain active with no evidence of elastic film formation even at significant interface ages. Finally, bacteria can adhere to and colonize ultra-low surface tension interfaces such as aqueous-aqueous systems common in food industries. Relevant literature is reviewed, and areas of interest for potential application are discussed, ranging from health to bioremediation.

摘要

细菌常被视为主动胶体,即自行推进的生物体,其集体运动可以在非平衡统计力学的背景下进行研究。在这些研究中,受限于界面或靠近界面的细菌行为起着重要作用。例如,许多研究已经探究了在类似肥皂膜的准二维系统中细菌的集体行为。由于流体界面可以吸附表面活性剂和其他材料,因此界面处的应力和速度边界条件会改变细菌的运动;对具有不同边界条件的界面的流体动力学研究进行了综述。此外,在本体中的细菌可以被困在或靠近流体界面处,在那里它们定植并形成由胞外多糖、表面活性剂、活细菌和死细菌等分泌物组成的结构,从而形成界面细菌膜(FBI)。讨论了在气-水、油-水和水-水界面处形成 FBI 的情况,重点介绍了膜力学,并略微提到了指导细菌重构流体界面的遗传功能。在气-水界面上,细菌形成菌膜或界面生物膜。综述了一些研究,这些研究表明不同细菌菌株的菌膜材料特性不同,并且菌膜物理化学性质可以作为反馈机制来调节膜的形成。在油-水界面上,根据细菌菌株的不同,形成了一系列的 FBI。一些带菌的界面从最初的活性膜开始老化,其动力学由运动细菌主导,经过粘弹性状态,形成弹性膜。另一些则保持活性,即使在显著的界面老化后,也没有弹性膜形成的证据。最后,细菌可以黏附并定植于超低表面张力的界面,例如食品工业中常见的水-水体系。综述了相关文献,并讨论了潜在应用的感兴趣领域,从健康到生物修复。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验