Marra Daniele, Rizzo Moreno, Caserta Sergio
DICMaPI, Università di Napoli Federico II, Napoli, Italy.
CEINGE, Biotecnologie Avanzate Franco Salvatore, Napoli, Italy.
NPJ Biofilms Microbiomes. 2025 Jul 1;11(1):122. doi: 10.1038/s41522-025-00744-4.
Biofilm proliferation in confined environments is a challenge in biomedical, industrial, and space applications. Surfaces in contact with fluids experience varying bulk stresses due to flow and gravity, factors often overlooked in biofilm studies. This research quantifies the combined effect of gravity and shear stress on Pseudomonas fluorescens SBW25 motility and biofilm growth. Using a rectangular-section microfluidic channel under laminar flow, we compared top and bottom surfaces, where gravity either pulls bacteria away or pushes them toward the surface. Results revealed an asymmetric bacterial distribution, leading to varying surface cell densities and contamination levels. We also analyzed spatial reorganization over time and classified bacterial motility under flow. Findings show that external mechanical stresses influence both motility and biofilm morphology, impacting biocontamination patterns based on shear stress and gravity direction. This study provides insights into biofilm control strategies in diverse environments.
受限环境中的生物膜增殖是生物医学、工业和太空应用中的一项挑战。与流体接触的表面会因流动和重力而承受不同的体积应力,这些因素在生物膜研究中常常被忽视。本研究量化了重力和剪切应力对荧光假单胞菌SBW25运动性和生物膜生长的综合影响。在层流条件下使用矩形截面微流控通道,我们比较了顶部和底部表面,在顶部重力会将细菌拉离表面,而在底部重力会将细菌推向表面。结果显示细菌分布不对称,导致表面细胞密度和污染水平各不相同。我们还分析了随时间的空间重组情况,并对流动状态下细菌的运动性进行了分类。研究结果表明,外部机械应力会影响细菌的运动性和生物膜形态,基于剪切应力和重力方向对生物污染模式产生影响。本研究为不同环境下的生物膜控制策略提供了见解。