Suppr超能文献

利用无磁场电子断层扫描技术对铁磁材料中的位错进行三维可视化

Three-dimensional visualization of dislocations in a ferromagnetic material by magnetic-field-free electron tomography.

作者信息

Hasezaki Kana L, Saito Hikaru, Sannomiya Takumi, Miyazaki Hiroya, Gondo Takashi, Miyazaki Shinsuke, Hata Satoshi

机构信息

Interdisciplinary Graduate school of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan.

Department of Advanced Materials Science, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan.

出版信息

Ultramicroscopy. 2017 Nov;182:249-257. doi: 10.1016/j.ultramic.2017.07.016. Epub 2017 Jul 26.

Abstract

In conventional transmission electron microscopy, specimens to be observed are placed in between the objective lens pole piece and therefore exposed to a strong magnetic field about 2 T. For a ferromagnetic specimen, magnetization of the specimen causes isotropic and anisotropic defocusing, deflection of the electron beam as well as deformation of the specimen, which all become more severe when the specimen tilted. Therefore electron tomography on a ferromagnetic crystalline specimen is highly challenging because tilt-series data sets must be acquired without changing the excitation condition of a specific diffraction spot. In this study, a scanning transmission electron microscopy (STEM) tomography method without magnetizing a ferromagnetic specimen has been developed for three-dimensional (3D) visualization of dislocations in α-Fe, which is a typical ferromagnetic material. Magnetic-field-free environment down to 0.38 ± 0.07 mT at the specimen position is realized by demagnetizing the objective lens pole piece of a commercial STEM instrument. By using a spherical aberration corrector with the magnetic-field-free environment, an "aberration corrected Low-Mag STEM mode" with no objective lens field reaches a convergence semi angle ∼1 mrad and a spatial resolution ∼5 nm, and shows an adequate performance of imaging dislocations under a two-beam excitation condition for a low-index diffracted beam. The illumination condition for the aberration corrected Low-Mag STEM mode gives no overlap between the direct beam disk (spot) and neighboring diffraction disks. An electron channeling contrast imaging technique, in which an annular detector was located at a doughnut area between the direct beam and the neighboring diffracted beams, was effectively employed with the aberration corrected Low-Mag STEM mode to keep image intensity high enough even at large specimen-tilt angles. The resultant tomographic observation visualized 3D dislocation arrangements and active slip planes in a deformed α-Fe specimen.

摘要

在传统透射电子显微镜中,待观察的样品放置在物镜极靴之间,因此会暴露在约2T的强磁场中。对于铁磁样品,样品的磁化会导致各向同性和各向异性散焦、电子束偏转以及样品变形,当样品倾斜时,这些情况会变得更加严重。因此,对铁磁晶体样品进行电子断层扫描极具挑战性,因为必须在不改变特定衍射斑激发条件的情况下获取倾斜系列数据集。在本研究中,已开发出一种不对铁磁样品进行磁化的扫描透射电子显微镜(STEM)断层扫描方法,用于对典型铁磁材料α-Fe中的位错进行三维(3D)可视化。通过对商用STEM仪器的物镜极靴进行退磁,在样品位置实现了低至0.38±0.07mT的无磁场环境。通过在无磁场环境下使用球差校正器,一种没有物镜场的“像差校正低倍STEM模式”达到了约1mrad的会聚半角和约5nm的空间分辨率,并在低指数衍射束的双束激发条件下显示出足够的位错成像性能。像差校正低倍STEM模式的照明条件使得直射束盘(斑)与相邻衍射盘之间没有重叠。一种电子通道对比度成像技术,其中环形探测器位于直射束和相邻衍射束之间的环形区域,与像差校正低倍STEM模式有效结合使用,即使在大样品倾斜角度下也能保持图像强度足够高。由此得到的断层扫描观察结果可视化了变形α-Fe样品中的3D位错排列和活动滑移面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验