Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Orthopaedics, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire.
Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Orthopaedics, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire; Department of Surgery & Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, Texas.
J Arthroplasty. 2017 Dec;32(12):3583-3590. doi: 10.1016/j.arth.2017.07.002. Epub 2017 Jul 11.
We sought to determine whether several preoperative socioeconomic status (SES) variables meaningfully improve predictive models for primary total knee arthroplasty (TKA) length of stay (LOS), facility discharge, and clinically significant Veterans RAND-12 physical component score (PCS) improvement.
We prospectively collected clinical data on 2198 TKAs at a high-volume rural tertiary academic hospital from April 2011 through March 2016. SES variables included race and/or ethnicity, living alone, education, employment, and household income, along with numerous adjusting variables. We determined individual SES predictors and whether the inclusion of all SES variables contributed to each 10-fold cross-validated area under the model's area under the receiver operating characteristic (AUC). We also used 1000-fold bootstrapping methods to determine whether the SES and non-SES models were statistically different from each other.
At least 1 SES predicted each outcome. Ethnic minority patients and those with incomes <$35,000 predicted longer LOS. Ethnic minority patients, the unemployed, and those living alone predicted facility discharge. Unemployed patients were less likely to achieve PCS improvement. Without the 5 SES variables, the AUC values of the LOS, discharge, and PCS models were 0.74 (95% confidence interval [CI] 0.72-0.77, "acceptable"); 0.86 (CI 0.84-0.87, "excellent"); and 0.80 (CI 0.78-0.82, "excellent"), respectively. Including the 5 SES variables, the 10-fold cross-validated and bootstrapped AUC values were 0.76 (CI 0.74-0.79); 0.87 (CI 0.85-0.88); and 0.81 (0.79-0.83), respectively.
We developed validated predictive models for outcomes after TKA. Although inclusion of multiple SES variables provided statistical predictive value in our models, the amount of improvement may not be clinically meaningful.
我们旨在确定术前社会经济地位(SES)的几个变量是否能显著改善初次全膝关节置换术(TKA)住院时间(LOS)、出院地点和具有临床意义的退伍军人 RAND-12 物理成分评分(PCS)改善的预测模型。
我们前瞻性地收集了 2011 年 4 月至 2016 年 3 月期间在一家高容量的农村三级学术医院进行的 2198 例 TKA 的临床数据。SES 变量包括种族和/或民族、独居、教育、就业和家庭收入,以及许多调整变量。我们确定了每个 SES 预测因子,以及是否包含所有 SES 变量会对每个 10 倍交叉验证模型的接收者操作特征(ROC)曲线下面积(AUC)产生贡献。我们还使用 1000 倍自举方法来确定 SES 和非 SES 模型是否彼此存在统计学差异。
至少有一个 SES 预测了每个结果。少数民族患者和收入<35000 美元的患者预测 LOS 更长。少数民族患者、失业者和独居者预测出院地点。失业患者更不可能实现 PCS 改善。如果不考虑 5 个 SES 变量,LOS、出院和 PCS 模型的 AUC 值分别为 0.74(95%置信区间[CI]0.72-0.77,“可接受”);0.86(CI0.84-0.87,“优秀”);0.80(CI0.78-0.82,“优秀”)。包含 5 个 SES 变量后,10 倍交叉验证和自举的 AUC 值分别为 0.76(CI0.74-0.79);0.87(CI0.85-0.88);0.81(0.79-0.83)。
我们开发了 TKA 术后结局的验证预测模型。尽管包含多个 SES 变量为我们的模型提供了统计学预测价值,但改善的幅度可能没有临床意义。