Suppr超能文献

在可溶性载体上合成寡核苷酸。

Synthesis of oligonucleotides on a soluble support.

作者信息

Lönnberg Harri

机构信息

Department of Chemistry, University of Turku, FIN-20014 Turku, Finland.

出版信息

Beilstein J Org Chem. 2017 Jul 12;13:1368-1387. doi: 10.3762/bjoc.13.134. eCollection 2017.

Abstract

Oligonucleotides are usually prepared in lab scale on a solid support with the aid of a fully automated synthesizer. Scaling up of the equipment has allowed industrial synthesis up to kilogram scale. In spite of this, solution-phase synthesis has received continuous interest, on one hand as a technique that could enable synthesis of even larger amounts and, on the other hand, as a gram scale laboratory synthesis without any special equipment. The synthesis on a soluble support has been regarded as an approach that could combine the advantageous features of both the solution and solid-phase syntheses. The critical step of this approach is the separation of the support-anchored oligonucleotide chain from the monomeric building block and other small molecular reagents and byproducts after each coupling, oxidation and deprotection step. The techniques applied so far include precipitation, extraction, chromatography and nanofiltration. As regards coupling, all conventional chemistries, viz. phosphoramidite, -phosphonate and phosphotriester strategies, have been attempted. While P(III)-based phosphoramidite and -phosphonate chemistries are almost exclusively used on a solid support, the "outdated" P(V)-based phosphotriester chemistry still offers one major advantage for the synthesis on a soluble support; the omission of the oxidation step simplifies the coupling cycle. Several of protocols developed for the soluble-supported synthesis allow the preparation of both DNA and RNA oligomers of limited length in gram scale without any special equipment, being evidently of interest for research groups that need oligonucleotides in large amounts for research purposes. However, none of them has really tested at such a scale that the feasibility of their industrial use could be critically judged.

摘要

寡核苷酸通常在实验室规模下借助全自动合成仪在固体支持物上制备。设备的放大使得工业合成可达千克规模。尽管如此,溶液相合成一直受到持续关注,一方面它可作为一种能够实现更大规模合成的技术,另一方面可作为无需任何特殊设备的克级实验室合成方法。在可溶性支持物上的合成被视为一种能够结合溶液相和固相合成优势特征的方法。该方法的关键步骤是在每次偶联、氧化和脱保护步骤后,将与支持物相连的寡核苷酸链与单体构建模块以及其他小分子试剂和副产物分离。目前应用的技术包括沉淀、萃取、色谱法和纳滤。关于偶联,所有传统化学方法,即亚磷酰胺、膦酸酯和磷酸三酯策略,都已被尝试。虽然基于P(III)的亚磷酰胺和膦酸酯化学方法几乎仅用于固体支持物上,但“过时”的基于P(V)的磷酸三酯化学方法在可溶性支持物合成方面仍具有一个主要优势;省略氧化步骤简化了偶联循环。为可溶性支持物合成开发的几种方案允许在克级规模下制备有限长度的DNA和RNA寡聚物,而无需任何特殊设备,这显然对于需要大量寡核苷酸用于研究目的的研究小组很有吸引力。然而,它们中没有一个在这样的规模下进行过真正测试,以至于无法严格判断其工业应用的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2582/5530625/65451cb7f02e/Beilstein_J_Org_Chem-13-1368-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验