Medical Biochemistry, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.
Bioessays. 2017 Sep;39(9). doi: 10.1002/bies.201700050. Epub 2017 Aug 7.
Recently, the group of McBride reported a stunning observation regarding peroxisome biogenesis: newly born peroxisomes are hybrids of mitochondrial and ER-derived pre-peroxisomes. What was stunning? Studies performed with the yeast Saccharomyces cerevisiae had convincingly shown that peroxisomes are ER-derived, without indications for mitochondrial involvement. However, the recent finding using fibroblasts dovetails nicely with a mechanism inferred to be driving the eukaryotic invention of peroxisomes: reduction of mitochondrial reactive oxygen species (ROS) generation associated with fatty acid (FA) oxidation. This not only explains the mitochondrial involvement, but also its apparent absence in yeast. The latest results allow a reconstruction of the evolution of the yeast's highly derived metabolism and its limitations as a model organism in this instance. As I review here, peroxisomes are eukaryotic inventions reflecting mutual host endosymbiont adaptations: this is predicted by symbiogenetic theory, which states that the defining eukaryotic characteristics evolved as a result of mutual adaptations of two merging prokaryotes.
最近,麦克布莱德小组报告了一项关于过氧化物酶体生物发生的惊人观察结果:新生成的过氧化物酶体是线粒体和内质网衍生的前过氧化物酶体的杂交体。有什么惊人之处?在酵母酿酒酵母中进行的研究令人信服地表明,过氧化物酶体是内质网衍生的,没有线粒体参与的迹象。然而,最近使用成纤维细胞的发现与一种被推断为驱动真核生物过氧化物酶体发明的机制非常吻合:与脂肪酸 (FA) 氧化相关的减少线粒体活性氧 (ROS) 的产生。这不仅解释了线粒体的参与,也解释了其在酵母中明显不存在的原因。最新的结果允许重建酵母高度衍生的代谢的进化及其在这种情况下作为模型生物的局限性。正如我在这里回顾的那样,过氧化物酶体是真核生物的发明,反映了宿主共生体的相互适应:这是共生进化理论所预测的,该理论指出,定义真核生物的特征是由于两个合并的原核生物相互适应而进化而来的。