Academic Medical Centre, Department of Medical Biochemistry, University of Amsterdam, Amsterdam, The Netherlands.
Bioessays. 2011 Feb;33(2):88-94. doi: 10.1002/bies.201000097.
Oxygen radical formation in mitochondria is a highly important, but incompletely understood, attribute of eukaryotic cells. I propose a kinetic model in which the ratio between electrons entering the respiratory chain via FADH₂ or NADH is a major determinant in radical formation. During the breakdown of glucose, this ratio is low; during fatty acid breakdown, this ratio is much higher. The longer the fatty acid, the higher the ratio and the higher the level of radical formation. This means that very long chain fatty acids should be broken down without generation of FADH₂ for mitochondria. This is accomplished in peroxisomes, thus explaining their role and evolution. The model explains many recent observations regarding radical formation by the respiratory chain. It also sheds light on the reasons for the lack of neuronal fatty acid (beta-) oxidation and for beneficial aspects of unsaturated fatty acids. Last but not least, it has very important implications for all models describing eukaryotic origins.
线粒体中氧自由基的形成是真核细胞一个非常重要但尚未完全了解的特性。我提出了一个动力学模型,其中通过 FADH₂或 NADH 进入呼吸链的电子的比例是自由基形成的主要决定因素。在葡萄糖分解过程中,该比例较低;在脂肪酸分解过程中,该比例要高得多。脂肪酸越长,该比例越高,自由基形成水平越高。这意味着非常长链脂肪酸的分解不应该产生 FADH₂ 供线粒体使用。这是在过氧化物酶体中完成的,从而解释了它们的作用和进化。该模型解释了许多关于呼吸链中自由基形成的最新观察结果。它还揭示了神经元脂肪酸(β-)氧化缺乏的原因以及不饱和脂肪酸有益方面的原因。最后但同样重要的是,它对所有描述真核生物起源的模型都具有非常重要的意义。