Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
Adv Mater. 2017 Oct;29(37). doi: 10.1002/adma.201703185. Epub 2017 Aug 7.
Rechargeable flexible solid Zn-air battery, with a high theoretical energy density of 1086 Wh kg , is among the most attractive energy technologies for future flexible and wearable electronics; nevertheless, the practical application is greatly hindered by the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) kinetics on the air electrode. Precious metal-free functionalized carbon materials are widely demonstrated as the most promising candidates, while it still lacks effective synthetic methodology to controllably synthesize carbocatalysts with targeted active sites. This work demonstrates the direct utilization of the intrinsic structural defects in nanocarbon to generate atomically dispersed Co-N -C active sites via defect engineering. As-fabricated Co/N/O tri-doped graphene catalysts with highly active sites and hierarchical porous scaffolds exhibit superior ORR/OER bifunctional activities and impressive applications in rechargeable Zn-air batteries. Specifically, when integrated into a rechargeable and flexible solid Zn-air battery, a high open-circuit voltage of 1.44 V, a stable discharge voltage of 1.19 V, and a high energy efficiency of 63% at 1.0 mA cm are achieved even under bending. The defect engineering strategy provides a new concept and effective methodology for the full utilization of nanocarbon materials with various structural features and further development of advanced energy materials.
可充电柔性固态锌空气电池具有 1086Whkg 的高理论能量密度,是未来柔性和可穿戴电子设备最具吸引力的能源技术之一;然而,其在空气电极上的氧气还原反应/氧气析出反应(ORR/OER)动力学迟缓极大地阻碍了其实际应用。无贵金属功能化碳材料被广泛证明是最有前途的候选材料,但仍缺乏有效合成方法来可控合成具有靶向活性位的碳催化剂。本工作通过缺陷工程,利用纳米碳中的固有结构缺陷直接生成原子分散的 Co-N-C 活性位,实现了这一目标。所制备的具有高活性位和分级多孔支架的 Co/N/O 三掺杂石墨烯催化剂表现出优异的 ORR/OER 双功能活性,并在可充电锌空气电池中有出色的应用。具体而言,当将其集成到可充电和柔性固态锌空气电池中时,即使在弯曲状态下,仍可实现 1.44V 的高开路电压、1.19V 的稳定放电电压和 63%的高能量效率(在 1.0mAcm 下)。缺陷工程策略为充分利用具有各种结构特征的纳米碳材料以及进一步开发先进能源材料提供了一个新概念和有效方法。