Suppr超能文献

用于析氧反应和氧还原反应的嵌入TM-N的石墨烯双功能电催化剂的计算洞察

Computational Insight into TM-N Embedded Graphene Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions.

作者信息

Dutta Supriti, Banerjee Paramita, Pati Swapan K

机构信息

Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India.

出版信息

ACS Phys Chem Au. 2022 Mar 25;2(4):305-315. doi: 10.1021/acsphyschemau.2c00003. eCollection 2022 Jul 27.

Abstract

Due to the energy crisis, development of bifunctional electrocatalysts for both oxygen evolution and reduction reactions is highly demanding. In this study, we have systematically investigated the bifunctional activity of metal (Co/Rh/Ir) and N co-doped graphene systems with varying N-dopant concentrations (TM-N @G, = 0, 2, 4) using first-principles calculations. Charge transfer from the metal sites to the adsorbed intermediates and the adsorption free energy of the intermediates play important roles to help understand the potential-determining step and overpotential values for oxygen evolution reaction (OER)/oxygen reduction reaction (ORR). A dual volcano plot for all the systems using a common descriptor Δ has been constructed. We find that the systems having Δ values in the range of 0.40-0.70 eV can act as bifunctional electrocatalysts. Our study not only highlights the importance of metal and non-metal co-doped graphene as bifunctional catalysts but also can serve as a promising strategy for the design of efficient OER/ORR electrocatalysts.

摘要

由于能源危机,开发用于析氧反应和氧还原反应的双功能电催化剂具有很高的需求。在本研究中,我们使用第一性原理计算系统地研究了具有不同氮掺杂浓度(TM-N@G,=0、2、4)的金属(Co/Rh/Ir)和氮共掺杂石墨烯体系的双功能活性。从金属位点到吸附中间体的电荷转移以及中间体的吸附自由能在帮助理解析氧反应(OER)/氧还原反应(ORR)的电位决定步骤和过电位值方面起着重要作用。使用通用描述符Δ构建了所有体系的双火山图。我们发现,Δ值在0.40-0.70 eV范围内的体系可以作为双功能电催化剂。我们的研究不仅突出了金属和非金属共掺杂石墨烯作为双功能催化剂的重要性,而且还可以作为设计高效OER/ORR电催化剂的一种有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7cd/9955129/00015e031996/pg2c00003_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验