Damodaran A R, Clarkson J D, Hong Z, Liu H, Yadav A K, Nelson C T, Hsu S-L, McCarter M R, Park K-D, Kravtsov V, Farhan A, Dong Y, Cai Z, Zhou H, Aguado-Puente P, García-Fernández P, Íñiguez J, Junquera J, Scholl A, Raschke M B, Chen L-Q, Fong D D, Ramesh R, Martin L W
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Nat Mater. 2017 Oct;16(10):1003-1009. doi: 10.1038/nmat4951. Epub 2017 Aug 7.
Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO/SrTiO superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a/a phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.
呈现相位竞争、序参量共存以及涌现序参量拓扑结构的系统构成了现代凝聚态物理的主要部分。在此,通过应用一系列表征技术和模拟,我们观察到在PbTiO/SrTiO超晶格中可以发现所有这些效应。通过探索这些结构随超晶格周期、温度和场的演化,我们观察到了几个新特征。首先,可以设计由具有电环形序的低温涡旋相和高温铁电a/a相之间的一级相变介导的相共存。在室温下,共存的涡旋相和铁电相形成中尺度的、纤维织构的分层超结构。涡旋相具有轴向极化,由周围铁电畴的净极化设定,因此它具有多序参量状态,属于一类旋光性电环形化合物。最后,对这个混合相系统施加电场允许涡旋相和铁电相之间相互转换,同时伴随着压电和非线性光学响应的数量级变化。我们的发现表明了新的交叉耦合功能。