School of Chemistry, Chemical Engineering and Life Science and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China.
Institute of Nanoscience and Nanotechnology Department of Physics, Central China Normal University, Wuhan, Hubei, 430079, P. R. China.
Adv Mater. 2017 Sep;29(36). doi: 10.1002/adma.201703463. Epub 2017 Aug 7.
One of the key challenges of aqueous supercapacitors is the relatively low voltage (0.8-2.0 V), which significantly limits the energy density and feasibility of practical applications of the device. Herein, this study reports a novel Ni-Mn-O solid-solution cathode to widen the supercapacitor device voltage, which can potentially suppress the oxygen evolution reaction and thus be operated stably within a quite wide potential window of 0-1.4 V (vs saturated calomel electrode) after a simple but unique phase-transformation electrochemical activation. The solid-solution structure is designed with an ordered array architecture and in situ nanocarbon modification to promote the charge/mass transfer kinetics. By paring with commercial activated carbon anode, an ultrahigh voltage asymmetric supercapacitor in neutral aqueous LiCl electrolyte is assembled (2.4 V; among the highest for single-cell supercapacitors). Moreover, by using a polyvinyl alcohol (PVA)-LiCl electrolyte, a 2.4 V hydrogel supercapacitor is further developed with an excellent Coulombic efficiency, good rate capability, and remarkable cycle life (>5000 cycles; 95.5% capacity retention). Only one cell can power the light-emitting diode indicator brightly. The resulting maximum volumetric energy density is 4.72 mWh cm , which is much superior to previous thin-film manganese-oxide-based supercapacitors and even battery-supercapacitor hybrid devices.
水系超级电容器的一个关键挑战是相对较低的电压(0.8-2.0 V),这极大地限制了器件的能量密度和实际应用的可行性。在此,本研究报告了一种新型的 Ni-Mn-O 固溶体阴极,以拓宽超级电容器器件的电压,这可以抑制析氧反应,并在经过简单但独特的相转变电化学激活后,在 0-1.4 V(相对于饱和甘汞电极)的相当宽的电位窗口内稳定运行。该固溶体结构采用有序排列结构和原位纳米碳改性设计,以促进电荷/质量转移动力学。与商业活性炭阳极配对,在中性水性 LiCl 电解质中组装了超高电压不对称超级电容器(2.4 V;在单电池超级电容器中属于最高电压之一)。此外,通过使用聚乙烯醇(PVA)-LiCl 电解质,进一步开发了 2.4 V 水凝胶超级电容器,具有出色的库仑效率、良好的倍率性能和显著的循环寿命(>5000 次循环;容量保持率为 95.5%)。仅一个电池就可以使发光二极管指示灯明亮地发光。由此产生的最大体积能量密度为 4.72 mWh cm -3 ,远优于先前的基于薄膜氧化锰的超级电容器,甚至优于电池-超级电容器混合器件。