Cheng Wenxiang, Fu Jimin, Hu Haibo, Ho Derek
School of Physics and Materials Science, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of education, Anhui University, Hefei, China.
Nanotechnology Center, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
Adv Sci (Weinh). 2021 Aug;8(16):e2100775. doi: 10.1002/advs.202100775. Epub 2021 Jun 17.
Micro-supercapacitors are notorious for their low energy densities compared to micro-batteries. While MXenes have been identified as promising capacitor-type electrode materials for alternative zinc-ion hybrid micro-supercapacitors (ZHMSCs) with higher energy density, their tightly spaced layered structure renders multivalent zinc-ions with large radii intercalation inefficient. Herein, through insertion of 1D core-shell conductive BC@PPy nanofibers between MXene nanosheets, an interlayer structure engineering technique for MXene/BC@PPy capacitor-type electrodes towards ZHMSCs is presented. Owing to simultaneously achieving two objectives: (i) widening the interlayer space and (ii) providing conductive connections between the loose MXene layers, enabled by the conductive BC@PPy nanospacer, the approach effectively enhances both ion and electron transport within the layered MXene structure, significantly increasing the areal capacitance of the MXene/BC@PPy film electrode to 388 mF cm , which is a 10-fold improvement from the pure MXene film electrode. Pairing with CNTs/MnO2 battery-type electrodes, the obtained ZHMSCs exhibit an areal energy density up to 145.4 μWh cm with an outstanding 95.8% capacity retention after 25000 cycles, which is the highest among recently reported MXene-based MSCs and approaches the level of micro-batteries. The interlayer structure engineering demonstrated in the MXene-based capacitor-type electrode provides a rational means to achieve battery-levelenergy density in the ZHMSCs.
与微型电池相比,微型超级电容器因其低能量密度而声名狼藉。虽然MXenes已被确定为有前景的电容型电极材料,可用于具有更高能量密度的替代锌离子混合微型超级电容器(ZHMSCs),但其紧密排列的层状结构使半径较大的多价锌离子嵌入效率低下。在此,通过在MXene纳米片之间插入一维核壳导电BC@PPy纳米纤维,提出了一种用于MXene/BC@PPy电容型电极制备ZHMSCs的层间结构工程技术。由于导电BC@PPy纳米间隔层同时实现了两个目标:(i)扩大层间空间和(ii)在松散的MXene层之间提供导电连接,该方法有效地增强了层状MXene结构内的离子和电子传输,将MXene/BC@PPy薄膜电极的面积电容显著提高到388 mF/cm²,这比纯MXene薄膜电极提高了10倍。与CNTs/MnO₂电池型电极配对,所制备的ZHMSCs表现出高达145.4 μWh/cm²的面积能量密度,在25000次循环后具有出色的95.8%的容量保持率,这是最近报道的基于MXene的微型超级电容器中最高的,接近微型电池的水平。在基于MXene的电容型电极中展示的层间结构工程为在ZHMSCs中实现电池级能量密度提供了一种合理的方法。