Suppr超能文献

基于被动空化成像的体外超声空化效应致组织液化为分类的事后分析

Post Hoc Analysis of Passive Cavitation Imaging for Classification of Histotripsy-Induced Liquefaction in Vitro.

出版信息

IEEE Trans Med Imaging. 2018 Jan;37(1):106-115. doi: 10.1109/TMI.2017.2735238. Epub 2017 Aug 2.

Abstract

Histotripsy utilizes focused ultrasound to generate bubble clouds for transcutaneous tissue liquefaction. Bubble activity maps are under development to provide image guidance and monitor treatment progress. The aim of this paper was to investigate the feasibility of using plane wave B-mode and passive cavitation images to be used as binary classifiers of histotripsy-induced liquefaction. Prostate tissue phantoms were exposed to histotripsy pulses over a range of pulse durations (5- ) and peak negative pressures (12-23 MPa). Acoustic emissions were recorded during the insonation and beamformed to form passive cavitation images. Plane wave B-mode images were acquired following the insonation to detect the hyperechoic bubble cloud. Phantom samples were sectioned and stained to delineate the liquefaction zone. Correlation between passive cavitation and plane wave B-mode images and the liquefaction zone was assessed using receiver operating characteristic (ROC) curve analysis. Liquefaction of the phantom was observed for all the insonation conditions. The area under the ROC (0.94 versus 0.82), accuracy (0.90 versus 0.83), and sensitivity (0.81 versus 0.49) was greater for passive cavitation images relative to B-mode images ( ) along the azimuth of the liquefaction zone. The specificity was greater than 0.9 for both imaging modalities. These results demonstrate a stronger correlation between histotripsy-induced liquefaction and passive cavitation imaging compared with the plane wave B-mode imaging, albeit with limited passive cavitation image range resolution.

摘要

超声空化爆破利用聚焦超声产生用于经皮组织液化的气泡云。正在开发气泡活动图以提供图像引导并监测治疗进展。本文的目的是研究使用平面波 B 模式和被动空化图像作为组织空化爆破诱导液化的二进制分类器的可行性。在一系列脉冲持续时间(5- )和峰值负压(12-23 MPa)下,将前列腺组织模型暴露于组织空化爆破脉冲下。在照射过程中记录声发射,并进行波束形成以形成被动空化图像。在照射后采集平面波 B 模式图像以检测高回声气泡云。对幻影样本进行切片和染色以描绘液化区。使用接收器操作特性 (ROC) 曲线分析评估被动空化和平面波 B 模式图像与液化区之间的相关性。对于所有照射条件,均观察到了幻影的液化。与 B 模式图像相比,被动空化图像的 ROC(0.94 对 0.82)、准确性(0.90 对 0.83)和灵敏度(0.81 对 0.49)在液化区的方位上更高( )。两种成像方式的特异性均大于 0.9。这些结果表明,与平面波 B 模式成像相比,组织空化爆破诱导的液化与被动空化成像之间的相关性更强,尽管被动空化图像的范围分辨率有限。

相似文献

1
Post Hoc Analysis of Passive Cavitation Imaging for Classification of Histotripsy-Induced Liquefaction in Vitro.
IEEE Trans Med Imaging. 2018 Jan;37(1):106-115. doi: 10.1109/TMI.2017.2735238. Epub 2017 Aug 2.
3
4
Acoustic Methods for Increasing the Cavitation Initiation Pressure Threshold.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Nov;65(11):2012-2019. doi: 10.1109/TUFFC.2018.2867793. Epub 2018 Aug 29.
5
Precision control of lesions by high-intensity focused ultrasound cavitation-based histotripsy through varying pulse duration.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jul;60(7):1401-11. doi: 10.1109/TUFFC.2013.2712.
6
MR-based detection of individual histotripsy bubble clouds formed in tissues and phantoms.
Magn Reson Med. 2016 Nov;76(5):1486-1493. doi: 10.1002/mrm.26062. Epub 2015 Nov 24.
7
Bubble dynamics in boiling histotripsy.
Ultrasound Med Biol. 2018 Dec;44(12):2673-2696. doi: 10.1016/j.ultrasmedbio.2018.07.025. Epub 2018 Sep 15.
8
Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation.
Ultrasound Med Biol. 2015 Jun;41(6):1651-67. doi: 10.1016/j.ultrasmedbio.2015.01.028. Epub 2015 Mar 9.
9
Integrated Histotripsy and Bubble Coalescence Transducer for Thrombolysis.
Ultrasound Med Biol. 2018 Dec;44(12):2697-2709. doi: 10.1016/j.ultrasmedbio.2018.08.013. Epub 2018 Sep 30.

引用本文的文献

1
Monitoring Fractionation in Elastic Tissues Using High Frame-Rate Doppler Ultrasound.
Ultrasound Med Biol. 2025 Aug 4. doi: 10.1016/j.ultrasmedbio.2025.07.012.
2
Ultrasound-Mediated Membrane Modulation for Biomedical Applications.
Nanomaterials (Basel). 2025 Jun 7;15(12):884. doi: 10.3390/nano15120884.
3
Chirp-Coded Subharmonic Imaging With Volterra Filtering: Histotripsy Bubble Cloud Assessment In Vitro and Ex Vivo.
IEEE Trans Ultrason Ferroelectr Freq Control. 2025 May;72(5):591-600. doi: 10.1109/TUFFC.2025.3556030. Epub 2025 May 7.
5
Acoustic Cavitation Emissions Predict Near-complete/complete Histotripsy Treatment in Soft Tissues.
Ultrasound Med Biol. 2025 May;51(5):909-920. doi: 10.1016/j.ultrasmedbio.2025.02.005. Epub 2025 Feb 26.
6
Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update.
J Ultrasound Med. 2025 Mar;44(3):381-433. doi: 10.1002/jum.16611. Epub 2024 Nov 11.
8
Histotripsy: A Method for Mechanical Tissue Ablation with Ultrasound.
Annu Rev Biomed Eng. 2024 Jul;26(1):141-167. doi: 10.1146/annurev-bioeng-073123-022334. Epub 2024 Jun 20.
9
Contrast-Enhanced Imaging of Histotripsy Bubble Clouds Using Chirp-Coded Excitation and Volterra Filtering.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Sep;70(9):989-998. doi: 10.1109/TUFFC.2023.3289918. Epub 2023 Aug 29.

本文引用的文献

1
In vivo real-time cavitation imaging in moving organs.
Phys Med Biol. 2017 Feb 7;62(3):843-857. doi: 10.1088/1361-6560/aa4fe8. Epub 2017 Jan 10.
2
Passive Acoustic Mapping with the Angular Spectrum Method.
IEEE Trans Med Imaging. 2017 Apr;36(4):983-993. doi: 10.1109/TMI.2016.2643565. Epub 2016 Dec 21.
3
Quantitative Frequency-Domain Passive Cavitation Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):177-191. doi: 10.1109/TUFFC.2016.2620492. Epub 2016 Oct 25.
4
Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Feb;64(2):374-390. doi: 10.1109/TUFFC.2016.2619913. Epub 2016 Oct 20.
5
Efficacy of histotripsy combined with rt-PA in vitro.
Phys Med Biol. 2016 Jul 21;61(14):5253-74. doi: 10.1088/0031-9155/61/14/5253. Epub 2016 Jun 29.
6
Non-Invasive Ultrasound Liver Ablation Using Histotripsy: Chronic Study in an In Vivo Rodent Model.
Ultrasound Med Biol. 2016 Aug;42(8):1890-902. doi: 10.1016/j.ultrasmedbio.2016.03.018. Epub 2016 Apr 29.
7
Effect of Frequency-Dependent Attenuation on Predicted Histotripsy Waveforms in Tissue-Mimicking Phantoms.
Ultrasound Med Biol. 2016 Jul;42(7):1701-5. doi: 10.1016/j.ultrasmedbio.2016.02.010. Epub 2016 Apr 20.
8
Predicting the growth of nanoscale nuclei by histotripsy pulses.
Phys Med Biol. 2016 Apr 7;61(7):2947-66. doi: 10.1088/0031-9155/61/7/2947. Epub 2016 Mar 17.
9
Bubble-Induced Color Doppler Feedback for Histotripsy Tissue Fractionation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Mar;63(3):408-19. doi: 10.1109/TUFFC.2016.2525859. Epub 2016 Feb 4.
10
MR-based detection of individual histotripsy bubble clouds formed in tissues and phantoms.
Magn Reson Med. 2016 Nov;76(5):1486-1493. doi: 10.1002/mrm.26062. Epub 2015 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验