Suppr超能文献

存在缺失数据时因果中介效应的可识别性与估计

Identifiability and estimation of causal mediation effects with missing data.

作者信息

Li Wei, Zhou Xiao-Hua

机构信息

Beijing International Center for Mathematical Research, Peking University, Beijing, China.

Department of Biostatistics, University of Washington, Seattle, WA, USA.

出版信息

Stat Med. 2017 Nov 10;36(25):3948-3965. doi: 10.1002/sim.7413. Epub 2017 Aug 7.

Abstract

Mediation analysis is a standard approach to understanding how and why an intervention works in social and medical sciences. However, the presence of missing data, especially missing not at random data, poses a great challenge for the applicability of this approach in practice. Current methods for handling such missingness are still lacking in causal mediation analysis. In this article, we first show the identifiability of causal mediation effects with different types of missing outcomes under different missingness mechanisms. We then provide corresponding approaches for estimation and inference. Especially for missing not at random data, we develop an estimating equation-based approach to estimate causal mediation effects, which can easily handle different types of mediators and outcomes, and we also establish the asymptotic results of the estimators. Simulation results show good performance for the proposed estimators in finite samples. Finally, we use a real data set from the Clinical Antipsychotic Trials of Intervention Effectiveness Research for Alzheimer disease to illustrate our approach.

摘要

中介分析是社会科学和医学科学中理解干预如何起作用以及为何起作用的一种标准方法。然而,缺失数据的存在,尤其是非随机缺失数据,给该方法在实际中的适用性带来了巨大挑战。目前在因果中介分析中仍缺乏处理此类缺失情况的方法。在本文中,我们首先展示了在不同缺失机制下,不同类型的缺失结果的因果中介效应的可识别性。然后我们提供了相应的估计和推断方法。特别是对于非随机缺失数据,我们开发了一种基于估计方程的方法来估计因果中介效应,该方法可以轻松处理不同类型的中介变量和结果,并且我们还建立了估计量的渐近结果。模拟结果表明,所提出的估计量在有限样本中表现良好。最后,我们使用来自阿尔茨海默病干预效果临床抗精神病药物试验研究的真实数据集来说明我们的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验