Suppr超能文献

在存在结局数据缺失的随机试验中,基于目标最小损失估计的双重稳健推断。

Doubly robust inference for targeted minimum loss-based estimation in randomized trials with missing outcome data.

作者信息

Díaz Iván, van der Laan Mark J

机构信息

Division of Biostatistics, Weill Cornell Medicine, New York, 10065, NY, USA.

Division of Biostatistics, University of California at Berkeley, Berkeley, 94720, CA, USA.

出版信息

Stat Med. 2017 Oct 30;36(24):3807-3819. doi: 10.1002/sim.7389. Epub 2017 Jul 25.

Abstract

Missing outcome data is a crucial threat to the validity of treatment effect estimates from randomized trials. The outcome distributions of participants with missing and observed data are often different, which increases bias. Causal inference methods may aid in reducing the bias and improving efficiency by incorporating baseline variables into the analysis. In particular, doubly robust estimators incorporate 2 nuisance parameters: the outcome regression and the missingness mechanism (ie, the probability of missingness conditional on treatment assignment and baseline variables), to adjust for differences in the observed and unobserved groups that can be explained by observed covariates. To consistently estimate the treatment effect, one of these nuisance parameters must be consistently estimated. Traditionally, nuisance parameters are estimated using parametric models, which often precludes consistency, particularly in moderate to high dimensions. Recent research on missing data has focused on data-adaptive estimation to help achieve consistency, but the large sample properties of such methods are poorly understood. In this article, we discuss a doubly robust estimator that is consistent and asymptotically normal under data-adaptive estimation of the nuisance parameters. We provide a formula for an asymptotically exact confidence interval under minimal assumptions. We show that our proposed estimator has smaller finite-sample bias compared to standard doubly robust estimators. We present a simulation study demonstrating the enhanced performance of our estimators in terms of bias, efficiency, and coverage of the confidence intervals. We present the results of an illustrative example: a randomized, double-blind phase 2/3 trial of antiretroviral therapy in HIV-infected persons.

摘要

缺失结局数据是随机试验治疗效果估计有效性的关键威胁。有缺失数据和有观测数据的参与者的结局分布通常不同,这会增加偏差。因果推断方法可能有助于通过将基线变量纳入分析来减少偏差并提高效率。特别是,双重稳健估计器纳入了两个干扰参数:结局回归和缺失机制(即基于治疗分配和基线变量的缺失概率),以调整可由观测协变量解释的观测组和未观测组之间的差异。为了一致地估计治疗效果,这些干扰参数之一必须被一致地估计。传统上,干扰参数是使用参数模型估计的,这往往排除了一致性,特别是在中等至高维度的情况下。最近关于缺失数据的研究集中在数据自适应估计上,以帮助实现一致性,但此类方法的大样本性质尚不清楚。在本文中,我们讨论了一种双重稳健估计器,在对干扰参数进行数据自适应估计时,它是一致的且渐近正态的。我们在最小假设下提供了一个渐近精确置信区间的公式。我们表明,与标准双重稳健估计器相比,我们提出的估计器具有更小的有限样本偏差。我们进行了一项模拟研究,证明了我们的估计器在偏差、效率和置信区间覆盖范围方面的性能得到了增强。我们展示了一个示例的结果:一项针对艾滋病毒感染者的抗逆转录病毒疗法的随机、双盲2/3期试验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验