Suppr超能文献

存在不依从性和完全不可忽略缺失数据的随机试验中因果效应的可识别性与估计

Identifiability and estimation of causal effects in randomized trials with noncompliance and completely nonignorable missing data.

作者信息

Chen Hua, Geng Zhi, Zhou Xiao-Hua

机构信息

School of Mathematical Sciences, Peking University, Beijing 100871, China.

出版信息

Biometrics. 2009 Sep;65(3):675-82. doi: 10.1111/j.1541-0420.2008.01120.x. Epub 2008 Aug 28.

Abstract

In this article, we first study parameter identifiability in randomized clinical trials with noncompliance and missing outcomes. We show that under certain conditions the parameters of interest are identifiable even under different types of completely nonignorable missing data: that is, the missing mechanism depends on the outcome. We then derive their maximum likelihood and moment estimators and evaluate their finite-sample properties in simulation studies in terms of bias, efficiency, and robustness. Our sensitivity analysis shows that the assumed nonignorable missing-data model has an important impact on the estimated complier average causal effect (CACE) parameter. Our new method provides some new and useful alternative nonignorable missing-data models over the existing latent ignorable model, which guarantees parameter identifiability, for estimating the CACE in a randomized clinical trial with noncompliance and missing data.

摘要

在本文中,我们首先研究存在不依从和结局缺失的随机临床试验中的参数可识别性。我们表明,在某些条件下,即使存在不同类型的完全不可忽略的缺失数据(即缺失机制取决于结局),感兴趣的参数仍是可识别的。然后,我们推导了它们的最大似然估计量和矩估计量,并在模拟研究中根据偏差、效率和稳健性评估了它们的有限样本性质。我们的敏感性分析表明,假定的不可忽略缺失数据模型对估计的依从者平均因果效应(CACE)参数有重要影响。我们的新方法在现有的潜在可忽略模型之上提供了一些新的、有用的替代不可忽略缺失数据模型,该模型保证了参数可识别性,用于在存在不依从和缺失数据的随机临床试验中估计CACE。

相似文献

1
Identifiability and estimation of causal effects in randomized trials with noncompliance and completely nonignorable missing data.
Biometrics. 2009 Sep;65(3):675-82. doi: 10.1111/j.1541-0420.2008.01120.x. Epub 2008 Aug 28.
2
Discussion of "Identifiability and estimation of causal effects in randomized trials with noncompliance and completely nonignorable missing data".
Biometrics. 2009 Sep;65(3):682-6; discussion 689-91. doi: 10.1111/j.1541-0420.2008.01121.x. Epub 2008 Aug 28.
3
Identifiability of subgroup causal effects in randomized experiments with nonignorable missing covariates.
Stat Med. 2014 Mar 30;33(7):1121-33. doi: 10.1002/sim.6014. Epub 2013 Oct 10.
4
Efficiency and robustness of causal effect estimators when noncompliance is measured with error.
Stat Med. 2018 Dec 10;37(28):4126-4141. doi: 10.1002/sim.7922. Epub 2018 Aug 14.
5
Causal inference methods to assess safety upper bounds in randomized trials with noncompliance.
Clin Trials. 2015 Jun;12(3):265-75. doi: 10.1177/1740774515572352. Epub 2015 Mar 1.
6
Multiple imputation methods for treatment noncompliance and nonresponse in randomized clinical trials.
Biometrics. 2009 Mar;65(1):88-95. doi: 10.1111/j.1541-0420.2008.01023.x. Epub 2008 Apr 4.
7
A Bayesian hierarchical model estimating CACE in meta-analysis of randomized clinical trials with noncompliance.
Biometrics. 2019 Sep;75(3):978-987. doi: 10.1111/biom.13028. Epub 2019 Apr 4.
8
Discussions.
Biometrics. 2009 Sep;65(3):686-9; discussion 689-91. doi: 10.1111/j.1541-0420.2008.01122.x. Epub 2008 Aug 28.
9
Simple efficient bias corrected instrumental variable estimator for randomized trials with noncompliance.
Contemp Clin Trials. 2012 Jul;33(4):786-93. doi: 10.1016/j.cct.2012.03.013. Epub 2012 Mar 30.
10
ITT analysis of randomized encouragement design studies with missing data.
Stat Med. 2006 Aug 30;25(16):2737-61. doi: 10.1002/sim.2388.

引用本文的文献

1
Mediation analysis with the mediator and outcome missing not at random.
J Am Stat Assoc. 2025;120(550):794-804. doi: 10.1080/01621459.2024.2359132. Epub 2024 Jun 26.
5
Zelen design clinical trials: why, when, and how.
Trials. 2021 Aug 17;22(1):541. doi: 10.1186/s13063-021-05517-w.
7
Improving upon the efficiency of complete case analysis when covariates are MNAR.
Biostatistics. 2014 Oct;15(4):719-30. doi: 10.1093/biostatistics/kxu023. Epub 2014 Jun 6.
8
Accommodating missingness when assessing surrogacy via principal stratification.
Clin Trials. 2013;10(3):363-77. doi: 10.1177/1740774513479522. Epub 2013 Apr 3.
10
Natural direct and indirect effects on the exposed: effect decomposition under weaker assumptions.
Biometrics. 2012 Dec;68(4):1019-27. doi: 10.1111/j.1541-0420.2012.01777.x. Epub 2012 Sep 18.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验