Suppr超能文献

面向预测的标记选择(PROMISE):及其在高维回归中的应用

Prediction-Oriented Marker Selection (PROMISE): With Application to High-Dimensional Regression.

作者信息

Kim Soyeon, Baladandayuthapani Veerabhadran, Lee J Jack

机构信息

Department of Statistics, Rice University, Houston, TX, USA.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Stat Biosci. 2017 Jun;9(1):217-245. doi: 10.1007/s12561-016-9169-5. Epub 2016 Sep 26.

Abstract

In personalized medicine, biomarkers are used to select therapies with the highest likelihood of success based on an individual patient's biomarker/genomic profile. Two goals are to choose important biomarkers that accurately predict treatment outcomes and to cull unimportant biomarkers to reduce the cost of biological and clinical verifications. These goals are challenging due to the high dimensionality of genomic data. Variable selection methods based on penalized regression (e.g., the lasso and elastic net) have yielded promising results. However, selecting the right amount of penalization is critical to simultaneously achieving these two goals. Standard approaches based on cross-validation (CV) typically provide high prediction accuracy with high true positive rates but at the cost of too many false positives. Alternatively, stability selection (SS) controls the number of false positives, but at the cost of yielding too few true positives. To circumvent these issues, we propose prediction-oriented marker selection (PROMISE), which combines SS with CV to conflate the advantages of both methods. Our application of PROMISE with the lasso and elastic net in data analysis shows that, compared to CV, PROMISE produces sparse solutions, few false positives, and small type I + type II error, and maintains good prediction accuracy, with a marginal decrease in the true positive rates. Compared to SS, PROMISE offers better prediction accuracy and true positive rates. In summary, PROMISE can be applied in many fields to select regularization parameters when the goals are to minimize false positives and maximize prediction accuracy.

摘要

在个性化医疗中,生物标志物用于根据个体患者的生物标志物/基因组概况选择最有可能成功的治疗方法。两个目标是选择能够准确预测治疗结果的重要生物标志物,并剔除不重要的生物标志物以降低生物学和临床验证的成本。由于基因组数据的高维度性,这些目标具有挑战性。基于惩罚回归的变量选择方法(例如套索回归和弹性网络)已取得了有前景的结果。然而,选择合适的惩罚量对于同时实现这两个目标至关重要。基于交叉验证(CV)的标准方法通常能提供高预测准确性和高真阳性率,但代价是出现过多的假阳性。另外,稳定性选择(SS)控制了假阳性的数量,但代价是真阳性数量过少。为了规避这些问题,我们提出了面向预测的标记选择(PROMISE),它将稳定性选择与交叉验证相结合,融合了两种方法的优点。我们将PROMISE与套索回归和弹性网络应用于数据分析表明,与交叉验证相比,PROMISE产生稀疏解、假阳性少、I型 + II型错误小,并保持良好的预测准确性,真阳性率略有下降。与稳定性选择相比,PROMISE提供了更好的预测准确性和真阳性率。总之,当目标是最小化假阳性并最大化预测准确性时,PROMISE可应用于许多领域来选择正则化参数。

相似文献

引用本文的文献

本文引用的文献

1
Clinical, pathological and molecular prognostic factors in prostate cancer decision-making process.
Urologia. 2016 Jan-Mar;83(1):14-20. doi: 10.5301/uro.5000166. Epub 2016 Feb 24.
2
Adaptive clinical trial designs in oncology.肿瘤学中的适应性临床试验设计。
Chin Clin Oncol. 2014 Dec;3(4). doi: 10.3978/j.issn.2304-3865.2014.06.04.
3
Wnt signaling pathway in non-small cell lung cancer.Wnt 信号通路在非小细胞肺癌中的作用。
J Natl Cancer Inst. 2014 Jan;106(1):djt356. doi: 10.1093/jnci/djt356. Epub 2013 Dec 5.
5
Companion diagnostic testing for targeted cancer therapies: an overview.靶向癌症治疗的伴随诊断检测:概述
Genet Test Mol Biomarkers. 2013 Jul;17(7):515-23. doi: 10.1089/gtmb.2012.0510. Epub 2013 Apr 10.
8
The BATTLE trial: personalizing therapy for lung cancer.BATTLE 试验:为肺癌患者实施个体化治疗。
Cancer Discov. 2011 Jun;1(1):44-53. doi: 10.1158/2159-8274.CD-10-0010. Epub 2011 Jun 1.
9
Stability selection for genome-wide association.全基因组关联的稳定性选择。
Genet Epidemiol. 2011 Nov;35(7):722-8. doi: 10.1002/gepi.20623. Epub 2011 Aug 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验