文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在随机临床试验中,通过生物标志物与治疗的相互作用,从高维Cox模型中稳健估计预期生存概率。

Robust estimation of the expected survival probabilities from high-dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials.

作者信息

Ternès Nils, Rotolo Federico, Michiels Stefan

机构信息

Service de Biostatistique et d'Epidémiologie, Gustave Roussy, B2M, RdC.114 rue Edouard-Vaillant, 94805, Villejuif, France.

CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, 94805, France.

出版信息

BMC Med Res Methodol. 2017 May 22;17(1):83. doi: 10.1186/s12874-017-0354-0.


DOI:10.1186/s12874-017-0354-0
PMID:28532387
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5441049/
Abstract

BACKGROUND: Thanks to the advances in genomics and targeted treatments, more and more prediction models based on biomarkers are being developed to predict potential benefit from treatments in a randomized clinical trial. Despite the methodological framework for the development and validation of prediction models in a high-dimensional setting is getting more and more established, no clear guidance exists yet on how to estimate expected survival probabilities in a penalized model with biomarker-by-treatment interactions. METHODS: Based on a parsimonious biomarker selection in a penalized high-dimensional Cox model (lasso or adaptive lasso), we propose a unified framework to: estimate internally the predictive accuracy metrics of the developed model (using double cross-validation); estimate the individual survival probabilities at a given timepoint; construct confidence intervals thereof (analytical or bootstrap); and visualize them graphically (pointwise or smoothed with spline). We compared these strategies through a simulation study covering scenarios with or without biomarker effects. We applied the strategies to a large randomized phase III clinical trial that evaluated the effect of adding trastuzumab to chemotherapy in 1574 early breast cancer patients, for which the expression of 462 genes was measured. RESULTS: In our simulations, penalized regression models using the adaptive lasso estimated the survival probability of new patients with low bias and standard error; bootstrapped confidence intervals had empirical coverage probability close to the nominal level across very different scenarios. The double cross-validation performed on the training data set closely mimicked the predictive accuracy of the selected models in external validation data. We also propose a useful visual representation of the expected survival probabilities using splines. In the breast cancer trial, the adaptive lasso penalty selected a prediction model with 4 clinical covariates, the main effects of 98 biomarkers and 24 biomarker-by-treatment interactions, but there was high variability of the expected survival probabilities, with very large confidence intervals. CONCLUSION: Based on our simulations, we propose a unified framework for: developing a prediction model with biomarker-by-treatment interactions in a high-dimensional setting and validating it in absence of external data; accurately estimating the expected survival probability of future patients with associated confidence intervals; and graphically visualizing the developed prediction model. All the methods are implemented in the R package biospear, publicly available on the CRAN.

摘要

背景:由于基因组学和靶向治疗的进展,越来越多基于生物标志物的预测模型被开发出来,用于在随机临床试验中预测治疗的潜在获益。尽管在高维环境中开发和验证预测模型的方法框架越来越完善,但对于如何在具有生物标志物与治疗相互作用的惩罚模型中估计预期生存概率,尚无明确的指导。 方法:基于在惩罚高维Cox模型(套索或自适应套索)中进行简约的生物标志物选择,我们提出了一个统一的框架来:在内部估计所开发模型的预测准确性指标(使用双重交叉验证);估计给定时间点的个体生存概率;构建其置信区间(解析法或自助法);并以图形方式直观显示它们(逐点或用样条平滑)。我们通过模拟研究比较了这些策略,涵盖有无生物标志物效应的情况。我们将这些策略应用于一项大型随机III期临床试验,该试验评估了在1574例早期乳腺癌患者中添加曲妥珠单抗至化疗的效果,其中测量了462个基因的表达。 结果:在我们的模拟中,使用自适应套索的惩罚回归模型以低偏差和标准误差估计新患者的生存概率;在非常不同的情况下,自助置信区间的经验覆盖概率接近名义水平。在训练数据集上进行的双重交叉验证紧密模拟了所选模型在外部验证数据中的预测准确性。我们还提出了一种使用样条对预期生存概率进行有用的直观表示。在乳腺癌试验中,自适应套索惩罚选择了一个包含4个临床协变量、98个生物标志物的主效应和24个生物标志物与治疗相互作用的预测模型,但预期生存概率的变异性很高,置信区间非常大。 结论:基于我们的模拟,我们提出了一个统一的框架,用于:在高维环境中开发具有生物标志物与治疗相互作用的预测模型并在没有外部数据的情况下进行验证;准确估计未来患者的预期生存概率及其相关置信区间;并以图形方式直观显示所开发的预测模型。所有方法都在R包biospear中实现,可在CRAN上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1c7/5441049/78b840b2559a/12874_2017_354_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1c7/5441049/ecdba10ed239/12874_2017_354_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1c7/5441049/c42e5bb57a7f/12874_2017_354_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1c7/5441049/29ecbe0e8c30/12874_2017_354_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1c7/5441049/78b840b2559a/12874_2017_354_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1c7/5441049/ecdba10ed239/12874_2017_354_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1c7/5441049/c42e5bb57a7f/12874_2017_354_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1c7/5441049/29ecbe0e8c30/12874_2017_354_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1c7/5441049/78b840b2559a/12874_2017_354_Fig4_HTML.jpg

相似文献

[1]
Robust estimation of the expected survival probabilities from high-dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials.

BMC Med Res Methodol. 2017-5-22

[2]
Identification of biomarker-by-treatment interactions in randomized clinical trials with survival outcomes and high-dimensional spaces.

Biom J. 2017-7

[3]
Favoring the hierarchical constraint in penalized survival models for randomized trials in precision medicine.

BMC Bioinformatics. 2023-3-16

[4]
High-dimensional Cox models: the choice of penalty as part of the model building process.

Biom J. 2010-2

[5]
biospear: an R package for biomarker selection in penalized Cox regression.

Bioinformatics. 2018-1-1

[6]
Identification of clinically relevant features in hypertensive patients using penalized regression: a case study of cardiovascular events.

Med Biol Eng Comput. 2019-7-25

[7]
L1 penalized estimation in the Cox proportional hazards model.

Biom J. 2010-2

[8]
NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.

Bioinformatics. 2015-6-18

[9]
A plea for taking all available clinical information into account when assessing the predictive value of omics data.

BMC Med Res Methodol. 2019-7-24

[10]
Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models.

BMC Bioinformatics. 2020-7-2

引用本文的文献

[1]
Transcriptomic signature defines two subtypes of locally advanced PCa with distinct neoadjuvant therapy benefits.

Front Oncol. 2023-5-17

[2]
Two-step hypothesis testing to detect gene-environment interactions in a genome-wide scan with a survival endpoint.

Stat Med. 2022-4-30

[3]
Genomic signatures define three subtypes of EGFR-mutant stage II-III non-small-cell lung cancer with distinct adjuvant therapy outcomes.

Nat Commun. 2021-11-8

[4]
TACCO, a Database Connecting Transcriptome Alterations, Pathway Alterations and Clinical Outcomes in Cancers.

Sci Rep. 2019-3-7

本文引用的文献

[1]
A Simple Method for Deriving the Confidence Regions for the Penalized Cox's Model via the Minimand Perturbation.

Commun Stat Theory Methods. 2017

[2]
Identification of biomarker-by-treatment interactions in randomized clinical trials with survival outcomes and high-dimensional spaces.

Biom J. 2017-7

[3]
Inference for survival prediction under the regularized Cox model.

Biostatistics. 2016-10

[4]
Empirical extensions of the lasso penalty to reduce the false discovery rate in high-dimensional Cox regression models.

Stat Med. 2016-7-10

[5]
A visualization method measuring the performance of biomarkers for guiding treatment decisions.

Pharm Stat. 2016

[6]
Genomic analysis reveals that immune function genes are strongly linked to clinical outcome in the North Central Cancer Treatment Group n9831 Adjuvant Trastuzumab Trial.

J Clin Oncol. 2015-3-1

[7]
SOX4 overexpression is a novel biomarker of malignant status and poor prognosis in breast cancer patients.

Tumour Biol. 2015-6

[8]
Investigating the prediction ability of survival models based on both clinical and omics data: two case studies.

Stat Med. 2014-12-30

[9]
Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial.

Ann Oncol. 2014-3-7

[10]
Personalized medicine: risk prediction, targeted therapies and mobile health technology.

BMC Med. 2014-2-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索