Suppr超能文献

统计几何特征在微动脉瘤检测中的应用。

Statistical Geometrical Features for Microaneurysm Detection.

机构信息

Department of Information Technology, SGGS Institute of Engineering & Technology, Nanded, Maharashtra, 431606, India.

Department of Electronics & Telecommunication, SGGS Institute of Engineering & Technology, Nanded, Maharashtra, 431606, India.

出版信息

J Digit Imaging. 2018 Apr;31(2):224-234. doi: 10.1007/s10278-017-0008-0.

Abstract

Automated microaneurysm (MA) detection is still an open challenge due to its small size and similarity with blood vessels. In this paper, we present a novel method which is simple, efficient, and real-time for segmenting and detecting MA in color fundus images (CFI). To do this, a novel set of features based on statistics of geometrical properties of connected regions, that can easily discriminate lesion and non-lesion pixels are used. For large-scale evaluation proposed method is validated on DIARETDB1, ROC, STARE, and MESSIDOR dataset. It proves robust with respect to different image characteristics and camera settings. The best performance was achieved on per-image evaluation on DIARETDB1 dataset with sensitivity of 88.09 at 92.65% specificity which is quite encouraging for clinical use.

摘要

自动微动脉瘤(MA)检测仍然是一个开放的挑战,因为它的体积小,与血管相似。在本文中,我们提出了一种新的方法,用于分割和检测彩色眼底图像(CFI)中的 MA,该方法简单、高效、实时。为此,使用了一组基于连通区域几何特性统计的新特征,这些特征可以很容易地区分病变和非病变像素。为了进行大规模评估,我们在 DIARETDB1、ROC、STARE 和 MESSIDOR 数据集上验证了所提出的方法。它在不同的图像特征和相机设置下表现出很强的稳健性。在 DIARETDB1 数据集上的逐图像评估中取得了最佳性能,灵敏度为 88.09%,特异性为 92.65%,这对于临床应用来说是非常有希望的。

相似文献

1
Statistical Geometrical Features for Microaneurysm Detection.
J Digit Imaging. 2018 Apr;31(2):224-234. doi: 10.1007/s10278-017-0008-0.
2
Microaneurysms detection in color fundus images using machine learning based on directional local contrast.
Biomed Eng Online. 2020 Apr 15;19(1):21. doi: 10.1186/s12938-020-00766-3.
3
Mathematical morphology for microaneurysm detection in fundus images.
Eur J Ophthalmol. 2020 Sep;30(5):1135-1142. doi: 10.1177/1120672119843021. Epub 2019 Apr 25.
4
Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms.
BMC Ophthalmol. 2018 Nov 6;18(1):288. doi: 10.1186/s12886-018-0954-4.
5
Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy.
Med Hypotheses. 2019 Aug;129:109242. doi: 10.1016/j.mehy.2019.109242. Epub 2019 May 21.
6
Red Lesion Detection Using Dynamic Shape Features for Diabetic Retinopathy Screening.
IEEE Trans Med Imaging. 2016 Apr;35(4):1116-26. doi: 10.1109/TMI.2015.2509785. Epub 2015 Dec 17.
8
A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images.
Comput Med Imaging Graph. 2015 Sep;44:41-53. doi: 10.1016/j.compmedimag.2015.07.001. Epub 2015 Jul 14.
9
Automatic detection of microaneurysms in retinal fundus images.
Comput Med Imaging Graph. 2017 Jan;55:106-112. doi: 10.1016/j.compmedimag.2016.08.001. Epub 2016 Aug 4.
10
Automatic detection of microaneurysms in diabetic retinopathy fundus images using the L*a*b color space.
J Opt Soc Am A Opt Image Sci Vis. 2016 Jan 1;33(1):74-83. doi: 10.1364/JOSAA.33.000074.

引用本文的文献

2
Multi-label classification of fundus images based on graph convolutional network.
BMC Med Inform Decis Mak. 2021 Jul 30;21(Suppl 2):82. doi: 10.1186/s12911-021-01424-x.

本文引用的文献

1
Localizing Microaneurysms in Fundus Images Through Singular Spectrum Analysis.
IEEE Trans Biomed Eng. 2017 May;64(5):990-1002. doi: 10.1109/TBME.2016.2585344. Epub 2016 Jun 27.
2
Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning.
Comput Methods Programs Biomed. 2014 Apr;114(1):1-10. doi: 10.1016/j.cmpb.2013.12.009. Epub 2014 Jan 7.
3
Simple hybrid method for fine microaneurysm detection from non-dilated diabetic retinopathy retinal images.
Comput Med Imaging Graph. 2013 Jul-Sep;37(5-6):394-402. doi: 10.1016/j.compmedimag.2013.05.005. Epub 2013 Jun 15.
4
Detection of neovascularization in diabetic retinopathy.
J Digit Imaging. 2012 Jun;25(3):437-44. doi: 10.1007/s10278-011-9418-6.
5
Spectral reflectance of the human ocular fundus.
Appl Opt. 1989 Mar 15;28(6):1061-77. doi: 10.1364/AO.28.001061.
7
Automatic detection of microaneurysms and hemorrhages in digital fundus images.
J Digit Imaging. 2010 Aug;23(4):430-7. doi: 10.1007/s10278-009-9246-0. Epub 2009 Nov 17.
8
Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs.
IEEE Trans Med Imaging. 2010 Jan;29(1):185-95. doi: 10.1109/TMI.2009.2033909. Epub 2009 Oct 9.
9
Optimal wavelet transform for the detection of microaneurysms in retina photographs.
IEEE Trans Med Imaging. 2008 Sep;27(9):1230-41. doi: 10.1109/TMI.2008.920619.
10
Automatic detection of microaneurysms in color fundus images.
Med Image Anal. 2007 Dec;11(6):555-66. doi: 10.1016/j.media.2007.05.001. Epub 2007 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验