Department of Computer Science, Nesamony Memorial Christian College Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, 627012, India.
Department of PG Computer Science, Nesamony Memorial Christian College Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, 627012, India.
Int Ophthalmol. 2024 Feb 17;44(1):91. doi: 10.1007/s10792-024-02982-5.
The timely diagnosis of medical conditions, particularly diabetic retinopathy, relies on the identification of retinal microaneurysms. However, the commonly used retinography method poses a challenge due to the diminutive dimensions and limited differentiation of microaneurysms in images.
Automated identification of microaneurysms becomes crucial, necessitating the use of comprehensive ad-hoc processing techniques. Although fluorescein angiography enhances detectability, its invasiveness limits its suitability for routine preventative screening.
This study proposes a novel approach for detecting retinal microaneurysms using a fundus scan, leveraging circular reference-based shape features (CR-SF) and radial gradient-based texture features (RG-TF).
The proposed technique involves extracting CR-SF and RG-TF for each candidate microaneurysm, employing a robust back-propagation machine learning method for training. During testing, extracted features from test images are compared with training features to categorize microaneurysm presence.
The experimental assessment utilized four datasets (MESSIDOR, Diaretdb1, e-ophtha-MA, and ROC), employing various measures. The proposed approach demonstrated high accuracy (98.01%), sensitivity (98.74%), specificity (97.12%), and area under the curve (91.72%).
The presented approach showcases a successful method for detecting retinal microaneurysms using a fundus scan, providing promising accuracy and sensitivity. This non-invasive technique holds potential for effective screening in diabetic retinopathy and other related medical conditions.
及时诊断医学病症,特别是糖尿病性视网膜病变,依赖于视网膜微动脉瘤的识别。然而,由于图像中微动脉瘤的微小尺寸和有限的差异,常用的视网膜摄影方法存在挑战。
自动识别微动脉瘤变得至关重要,需要使用全面的特定处理技术。虽然荧光血管造影术提高了检测能力,但它的侵入性限制了其在常规预防性筛查中的适用性。
本研究提出了一种使用眼底扫描检测视网膜微动脉瘤的新方法,利用基于圆形参考的形状特征(CR-SF)和基于径向梯度的纹理特征(RG-TF)。
该技术涉及为每个候选微动脉瘤提取 CR-SF 和 RG-TF,使用稳健的反向传播机器学习方法进行训练。在测试中,将测试图像的提取特征与训练特征进行比较,以分类微动脉瘤的存在。
实验评估使用了四个数据集(MESSIDOR、Diaretdb1、e-ophtha-MA 和 ROC),采用了多种度量标准。所提出的方法表现出高准确率(98.01%)、高灵敏度(98.74%)、高特异性(97.12%)和高曲线下面积(91.72%)。
本研究提出的使用眼底扫描检测视网膜微动脉瘤的方法取得了成功,具有很高的准确性和灵敏度。这种非侵入性技术在糖尿病性视网膜病变和其他相关医疗条件的有效筛查方面具有很大的潜力。