Suppr超能文献

一种用于具有混合类型响应的多变量纵向数据的联合建模和估计方法,以分析由加速度计生成的身体活动数据。

A joint modeling and estimation method for multivariate longitudinal data with mixed types of responses to analyze physical activity data generated by accelerometers.

作者信息

Li Haocheng, Zhang Yukun, Carroll Raymond J, Keadle Sarah Kozey, Sampson Joshua N, Matthews Charles E

机构信息

Departments of Oncology and Community Health Sciences, University of Calgary, Calgary, Canada.

Department of Oncology, University of Calgary, Calgary, Canada.

出版信息

Stat Med. 2017 Nov 10;36(25):4028-4040. doi: 10.1002/sim.7401. Epub 2017 Aug 7.

Abstract

A mixed effect model is proposed to jointly analyze multivariate longitudinal data with continuous, proportion, count, and binary responses. The association of the variables is modeled through the correlation of random effects. We use a quasi-likelihood type approximation for nonlinear variables and transform the proposed model into a multivariate linear mixed model framework for estimation and inference. Via an extension to the EM approach, an efficient algorithm is developed to fit the model. The method is applied to physical activity data, which uses a wearable accelerometer device to measure daily movement and energy expenditure information. Our approach is also evaluated by a simulation study.

摘要

提出了一种混合效应模型,用于联合分析具有连续、比例、计数和二元响应的多变量纵向数据。变量之间的关联通过随机效应的相关性进行建模。对于非线性变量,我们使用拟似然类型近似,并将所提出的模型转换为多变量线性混合模型框架进行估计和推断。通过对期望最大化(EM)方法的扩展,开发了一种有效的算法来拟合该模型。该方法应用于身体活动数据,该数据使用可穿戴加速度计设备来测量日常活动和能量消耗信息。我们的方法也通过模拟研究进行了评估。

相似文献

3
Hierarchical functional data with mixed continuous and binary measurements.
Biometrics. 2014 Dec;70(4):802-11. doi: 10.1111/biom.12211. Epub 2014 Aug 18.
4
Multivariate t nonlinear mixed-effects models for multi-outcome longitudinal data with missing values.
Stat Med. 2014 Jul 30;33(17):3029-46. doi: 10.1002/sim.6144. Epub 2014 Mar 17.
5
Variable selection for joint models of multivariate longitudinal measurements and event time data.
Stat Med. 2017 Oct 30;36(24):3820-3829. doi: 10.1002/sim.7391. Epub 2017 Jul 14.
6
Generalized quasi-linear mixed-effects model.
Stat Methods Med Res. 2022 Jul;31(7):1280-1291. doi: 10.1177/09622802221085864. Epub 2022 Mar 14.
7
Parametric latent class joint model for a longitudinal biomarker and recurrent events.
Stat Med. 2007 Dec 20;26(29):5285-302. doi: 10.1002/sim.2915.
8
Flexible multivariate marginal models for analyzing multivariate longitudinal data, with applications in R.
Comput Methods Programs Biomed. 2014 Jul;115(3):135-46. doi: 10.1016/j.cmpb.2014.04.005. Epub 2014 Apr 19.
9
Classification of longitudinal data through a semiparametric mixed-effects model based on lasso-type estimators.
Biometrics. 2015 Jun;71(2):333-43. doi: 10.1111/biom.12280. Epub 2015 Jan 30.

引用本文的文献

本文引用的文献

1
An Evaluation of Accelerometer-derived Metrics to Assess Daily Behavioral Patterns.
Med Sci Sports Exerc. 2017 Jan;49(1):54-63. doi: 10.1249/MSS.0000000000001073.
2
Hierarchical functional data with mixed continuous and binary measurements.
Biometrics. 2014 Dec;70(4):802-11. doi: 10.1111/biom.12211. Epub 2014 Aug 18.
3
Changes in sedentary time and physical activity in response to an exercise training and/or lifestyle intervention.
J Phys Act Health. 2014 Sep;11(7):1324-33. doi: 10.1123/jpah.2012-0340. Epub 2013 Oct 31.
4
Statistical models for longitudinal zero-inflated count data with applications to the substance abuse field.
Stat Med. 2012 Dec 20;31(29):4074-86. doi: 10.1002/sim.5510. Epub 2012 Jul 24.
5
The analysis of multivariate longitudinal data: a review.
Stat Methods Med Res. 2014 Feb;23(1):42-59. doi: 10.1177/0962280212445834. Epub 2012 Apr 20.
6
Pairwise fitting of mixed models for the joint modeling of multivariate longitudinal profiles.
Biometrics. 2006 Jun;62(2):424-31. doi: 10.1111/j.1541-0420.2006.00507.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验