State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, Zhejiang 310003, China.
Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.
Anal Chem. 2017 Sep 5;89(17):9424-9431. doi: 10.1021/acs.analchem.7b02240. Epub 2017 Aug 18.
Blood is widely used for discovery metabolomics to search for disease biomarkers. However, blood sample matrix can have a profound effect on metabolome analysis, which can impose an undesirable restriction on the type of blood collection tubes that can be used for blood metabolomics. We investigated the effect of blood sample matrix on metabolome analysis using a high-coverage and quantitative metabolome profiling technique based on differential chemical isotope labeling (CIL) LC-MS. We used C-/C-dansylation LC-MS to perform relative quantification of the amine/phenol submetabolomes of four types of samples (i.e., serum, EDTA plasma, heparin plasma, and citrate plasma) collected from healthy individuals and compare their metabolomic results. From the analysis of 80 plasma and serum samples in experimental triplicate, we detected a total of 3651 metabolites with an average of 1818 metabolites per run (n = 240). The number of metabolites detected and the precision and accuracy of relative quantification were found to be independent of the sample type. Within each sample type, the metabolome data set could reveal biological variation (e.g., sex separation). Although the relative concentrations of some individual metabolites might be different in the four types of samples, for sex separation, all 66 significant metabolites with larger fold-changes (FC ≥ 2 and p < 0.05) found in at least one sample type could be found in the other types of samples with similar or somewhat reduced, but still significant, fold-changes. Our results indicate that CIL LC-MS could overcome the sample matrix effect, thereby greatly broadening the scope of blood metabolomics; any blood samples properly collected in routine clinical settings, including those in biobanks originally used for other purposes, can potentially be used for discovery metabolomics.
血液被广泛用于发现代谢组学,以寻找疾病生物标志物。然而,血液样本基质会对代谢组分析产生深远影响,这可能会对可用于血液代谢组学的血液采集管类型施加不期望的限制。我们使用基于差异化学同位素标记 (CIL) LC-MS 的高覆盖率和定量代谢组学分析技术研究了血液样本基质对代谢组分析的影响。我们使用 C-/C-丹酰化 LC-MS 对来自健康个体的四种类型的样本(即血清、EDTA 血浆、肝素血浆和柠檬酸盐血浆)的胺/酚亚代谢组进行相对定量,并比较它们的代谢组学结果。从对实验重复 3 次的 80 个血浆和血清样本的分析中,我们共检测到 3651 种代谢物,平均每个运行 1818 种代谢物(n = 240)。检测到的代谢物数量以及相对定量的精密度和准确性与样本类型无关。在每种样本类型中,代谢组数据集都可以揭示生物学变化(例如,性别分离)。尽管四种类型的样本中一些个体代谢物的相对浓度可能不同,但对于性别分离,所有 66 种在至少一种样本类型中发现的具有较大倍数变化(FC≥2 和 p<0.05)的显著代谢物都可以在其他类型的样本中找到,其倍数变化相似或略有降低,但仍然显著。我们的结果表明,CIL LC-MS 可以克服样本基质效应,从而大大拓宽血液代谢组学的范围;任何在常规临床环境中采集的血液样本,包括那些最初用于其他目的的生物库样本,都可以潜在地用于发现代谢组学。