Robison Kathryn M, Conway Cassandra K, Desrosiers Laurephile, Knoepp Leise R, Miller Kristin S
Mem. ASME Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118 e-mail: .
Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118 e-mail: .
J Biomech Eng. 2017 Oct 1;139(10):1045041-8. doi: 10.1115/1.4037559.
Progress toward understanding the underlying mechanisms of pelvic organ prolapse (POP) is limited, in part, due to a lack of information on the biomechanical properties and microstructural composition of the vaginal wall. Compromised vaginal wall integrity is thought to contribute to pelvic floor disorders; however, normal structure-function relationships within the vaginal wall are not fully understood. In addition to the information produced from uniaxial testing, biaxial extension-inflation tests performed over a range of physiological values could provide additional insights into vaginal wall mechanical behavior (i.e., axial coupling and anisotropy), while preserving in vivo tissue geometry. Thus, we present experimental methods of assessing murine vaginal wall biaxial mechanical properties using extension-inflation protocols. Geometrically intact vaginal samples taken from 16 female C57BL/6 mice underwent pressure-diameter and force-length preconditioning and testing within a pressure-myograph device. A bilinear curve fit was applied to the local stress-stretch data to quantify the transition stress and stretch as well as the toe- and linear-region moduli. The murine vaginal wall demonstrated a nonlinear response resembling that of other soft tissues, and evaluation of bilinear curve fits suggests that the vagina exhibits pseudoelasticity, axial coupling, and anisotropy. The protocols developed herein permit quantification of biaxial tissue properties. These methods can be utilized in future studies in order to assess evolving structure-function relationships with respect to aging, the onset of prolapse, and response to potential clinical interventions.
在理解盆腔器官脱垂(POP)潜在机制方面取得的进展有限,部分原因是缺乏关于阴道壁生物力学特性和微观结构组成的信息。阴道壁完整性受损被认为是导致盆底功能障碍的原因之一;然而,阴道壁内正常的结构-功能关系尚未完全明确。除了单轴测试所提供的信息外,在一系列生理值范围内进行的双轴拉伸-膨胀测试可以在保留体内组织几何形状的同时,为阴道壁的力学行为(即轴向耦合和各向异性)提供更多见解。因此,我们提出了使用拉伸-膨胀方案评估小鼠阴道壁双轴力学特性的实验方法。从16只雌性C57BL/6小鼠身上获取的几何形状完整的阴道样本,在压力-肌动描记仪装置内进行压力-直径和力-长度预处理及测试。对局部应力-应变数据应用双线性曲线拟合,以量化转变应力和应变以及趾部和线性区域的模量。小鼠阴道壁表现出类似于其他软组织的非线性反应,对双线性曲线拟合的评估表明,阴道具有伪弹性、轴向耦合和各向异性。本文开发的方案允许对双轴组织特性进行量化。这些方法可用于未来的研究,以评估与衰老、脱垂的发生以及对潜在临床干预的反应相关的结构-功能关系的演变。