Rane Gayatri K, Seifert Marietta, Menzel Siegfried, Gemming Thomas, Eckert Jürgen
SAWLab Saxony, IFW Dresden, 270116 01171 Dresden, Germany.
Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (ÖAW), Austria.
Materials (Basel). 2016 Feb 6;9(2):101. doi: 10.3390/ma9020101.
Thin films of tungsten on piezoelectric substrates La₃Ga₅SiO (LGS) and Ca₃TaGa₃Si₂O (CTGS) have been investigated as a potential new electrode material for interdigital transducers for surface acoustic wave-based sensor devices operating at high temperatures up to 800 °C under vacuum conditions. Although LGS is considered to be suitable for high-temperature applications, it undergoes chemical and structural transformation upon vacuum annealing due to diffusion of gallium and oxygen. This can alter the device properties depending on the electrode nature, the annealing temperature, and the duration of the application. Our studies present evidence for the chemical stability of W on these substrates against the diffusion of Ga/O from the substrate into the film, even upon annealing up to 800 °C under vacuum conditions using Auger electron spectroscopy and energy-dispersive X-ray spectroscopy, along with local studies using transmission electron microscopy. Additionally, the use of CTGS as a more stable substrate for such applications is indicated.
人们研究了在压电衬底镧镓硅氧化物(LGS)和钽镓硅钙氧化物(CTGS)上的钨薄膜,将其作为叉指换能器潜在的新型电极材料,用于基于表面声波的传感器设备,该设备在真空条件下可在高达800℃的高温下运行。尽管LGS被认为适用于高温应用,但由于镓和氧的扩散,它在真空退火时会发生化学和结构转变。这可能会根据电极性质﹑退火温度和施加时间改变器件性能。我们的研究表明,即使在真空条件下高达800℃退火,使用俄歇电子能谱和能量色散X射线能谱以及使用透射电子显微镜进行的局部研究,钨在这些衬底上也具有化学稳定性,可抵抗镓/氧从衬底扩散到薄膜中。此外,还表明使用CTGS作为此类应用中更稳定的衬底。