Guenter Brian, Joshi Neel, Stoakley Richard, Keefe Andrew, Geary Kevin, Freeman Ryan, Hundley Jake, Patterson Pamela, Hammon David, Herrera Guillermo, Sherman Elena, Nowak Andrew, Schubert Randall, Brewer Peter, Yang Louis, Mott Russell, McKnight Geoff
Opt Express. 2017 Jun 12;25(12):13010-13023. doi: 10.1364/OE.25.013010.
The significant optical and size benefits of using a curved focal surface for imaging systems have been well studied yet never brought to market for lack of a high-quality, mass-producible, curved image sensor. In this work we demonstrate that commercial silicon CMOS image sensors can be thinned and formed into accurate, highly curved optical surfaces with undiminished functionality. Our key development is a pneumatic forming process that avoids rigid mechanical constraints and suppresses wrinkling instabilities. A combination of forming-mold design, pressure membrane elastic properties, and controlled friction forces enables us to gradually contact the die at the corners and smoothly press the sensor into a spherical shape. Allowing the die to slide into the concave target shape enables a threefold increase in the spherical curvature over prior approaches having mechanical constraints that resist deformation, and create a high-stress, stretch-dominated state. Our process creates a bridge between the high precision and low-cost but planar CMOS process, and ideal non-planar component shapes such as spherical imagers for improved optical systems. We demonstrate these curved sensors in prototype cameras with custom lenses, measuring exceptional resolution of 3220 line-widths per picture height at an aperture of f/1.2 and nearly 100% relative illumination across the field. Though we use a 1/2.3" format image sensor in this report, we also show this process is generally compatible with many state of the art imaging sensor formats. By example, we report photogrammetry test data for an APS-C sized silicon die formed to a 30° subtended spherical angle. These gains in sharpness and relative illumination enable a new generation of ultra-high performance, manufacturable, digital imaging systems for scientific, industrial, and artistic use.
使用弯曲焦平面的成像系统在光学和尺寸方面具有显著优势,这已得到充分研究,但由于缺乏高质量、可大规模生产的弯曲图像传感器,一直未能推向市场。在这项工作中,我们证明了商用硅CMOS图像传感器可以被减薄并形成精确的、高度弯曲的光学表面,且功能不受影响。我们的关键进展是一种气动成型工艺,该工艺避免了刚性机械约束并抑制了起皱不稳定性。成型模具设计、压力膜弹性特性和可控摩擦力的结合,使我们能够在角落逐渐接触模具,并将传感器平稳地压制成球形。允许模具滑入凹形目标形状,使得球形曲率比先前具有抵抗变形的机械约束并产生高应力、拉伸主导状态的方法提高了三倍。我们的工艺在高精度、低成本的平面CMOS工艺与理想的非平面组件形状(如用于改进光学系统的球形成像器)之间架起了一座桥梁。我们在配备定制镜头的原型相机中展示了这些弯曲传感器,在f/1.2的光圈下,每图像高度测量出3220线宽的卓越分辨率,并且整个视场的相对照度接近100%。尽管在本报告中我们使用的是1/2.3"格式的图像传感器,但我们也表明该工艺通常与许多先进的成像传感器格式兼容。例如,我们报告了一个APS-C尺寸的硅芯片成型为30°张角球形的摄影测量测试数据。这些清晰度和相对照度的提升,为科学、工业和艺术用途带来了新一代超高性能、可制造的数字成像系统。