Suppr超能文献

具有3D打印玻璃光导阵列的受生物启发的紧凑型高分辨率快照高光谱成像系统

Bio-inspired Compact, High-resolution Snapshot Hyperspectral Imaging System with 3D Printed Glass Lightguide Array.

作者信息

Hong Zhihan, Sun Yuanyuan, Ye Piaoran, Loy Douglas A, Liang Rongguang

机构信息

Wyant College of Optical Sciences, The University of Arizona, 1630 E University Blvd, Tucson, AZ 85721, USA.

Department of Chemistry & Biochemistry, The University of Arizona, 1306 E. University Blvd, Tucson, AZ 85721-0041, USA.

出版信息

Adv Opt Mater. 2023 May 4;11(9). doi: 10.1002/adom.202300156. Epub 2023 Feb 28.

Abstract

To address the major challenges to obtain high spatial resolution in snapshot hyperspectral imaging, 3D printed glass lightguide array has been developed to sample the intermediate image in high spatial resolution and redistribute the pixels in the output end to achieve high spectral resolution. Curved 3D printed lightguide array can significantly simplify the snapshot hyperspectral imaging system, achieve better imaging performance, and reduce the system complexity and cost. We have developed two-photon polymerization process to print glass lightguide array, and demonstrated the system performance with biological samples. This new snapshot technology will catalyze new hyperspectral imaging system development and open doors for new applications from UV to IR.

摘要

为应对在快照超光谱成像中获得高空间分辨率的主要挑战,已开发出3D打印玻璃光导阵列,以高空间分辨率对中间图像进行采样,并在输出端重新分配像素以实现高光谱分辨率。弯曲的3D打印光导阵列可显著简化快照超光谱成像系统,实现更好的成像性能,并降低系统复杂性和成本。我们已开发出双光子聚合工艺来打印玻璃光导阵列,并通过生物样品展示了系统性能。这种新的快照技术将推动新的超光谱成像系统发展,并为从紫外到红外的新应用打开大门。

相似文献

1
Bio-inspired Compact, High-resolution Snapshot Hyperspectral Imaging System with 3D Printed Glass Lightguide Array.
Adv Opt Mater. 2023 May 4;11(9). doi: 10.1002/adom.202300156. Epub 2023 Feb 28.
2
Enhanced spatial resolution for snapshot hyperspectral imaging of blood perfusion and melanin information within human tissue.
J Biophotonics. 2020 May;13(5):e202000019. doi: 10.1002/jbio.202000019. Epub 2020 Mar 10.
3
Snapshot hyperspectral retinal imaging using compact spectral resolving detector array.
J Biophotonics. 2017 Jun;10(6-7):830-839. doi: 10.1002/jbio.201600053. Epub 2016 Jul 19.
4
A High-Resolution Hyperspectral Imaging System for the Retina.
Proc SPIE Int Soc Opt Eng. 2024 Jan-Feb;12836. doi: 10.1117/12.3001647. Epub 2024 Mar 12.
5
Spatial-scanning hyperspectral imaging probe for bio-imaging applications.
Rev Sci Instrum. 2016 Mar;87(3):033707. doi: 10.1063/1.4943968.
7
Microlens array snapshot hyperspectral microscopy system for the biomedical domain.
Appl Opt. 2021 Mar 1;60(7):1896-1902. doi: 10.1364/AO.417952.
9
SASSI - Super-Pixelated Adaptive Spatio-Spectral Imaging.
IEEE Trans Pattern Anal Mach Intell. 2021 Jul;43(7):2233-2244. doi: 10.1109/TPAMI.2021.3075228. Epub 2021 Jun 10.

引用本文的文献

1
Extremely Compact 3D Printed Glass Ternary Diffractive Optical Element for Holographic Images.
Adv Opt Mater. 2025 Aug 5;13(22). doi: 10.1002/adom.202501074. Epub 2025 Jun 10.
2
Label-free surface sectioning deep ultraviolet tissue imaging in multimodalities.
Biomed Opt Express. 2025 Jun 16;16(7):2756-2766. doi: 10.1364/BOE.565070. eCollection 2025 Jul 1.
3
Diffractive hyperchromatic objective for chromatic confocal microscopy.
Biomed Opt Express. 2024 Nov 14;15(12):6834-6844. doi: 10.1364/BOE.543322. eCollection 2024 Dec 1.
4
The cutting-edge progress in bioprinting for biomedicine: principles, applications, and future perspectives.
MedComm (2020). 2024 Sep 23;5(10):e753. doi: 10.1002/mco2.753. eCollection 2024 Oct.
6
Room-Temperature Molding of Complex-Shaped Transparent Fused Silica Lenses.
Adv Sci (Weinh). 2023 Dec;10(34):e2304756. doi: 10.1002/advs.202304756. Epub 2023 Oct 23.
7
Fabrication of waveguide directional couplers using 2-photon lithography.
Opt Express. 2023 Jul 31;31(16):26323-26334. doi: 10.1364/OE.495363.

本文引用的文献

1
High-Precision Printing of Complex Glass Imaging Optics with Precondensed Liquid Silica Resin.
Adv Sci (Weinh). 2022 Jun;9(18):e2105595. doi: 10.1002/advs.202105595. Epub 2022 Apr 25.
2
Light-guide snapshot imaging spectrometer for remote sensing applications.
Opt Express. 2019 May 27;27(11):15701-15725. doi: 10.1364/OE.27.015701.
3
High-Speed 3D Printing of Millimeter-Size Customized Aspheric Imaging Lenses with Sub 7 nm Surface Roughness.
Adv Mater. 2018 May;30(18):e1705683. doi: 10.1002/adma.201705683. Epub 2018 Mar 24.
4
Highly curved image sensors: a practical approach for improved optical performance.
Opt Express. 2017 Jun 12;25(12):13010-13023. doi: 10.1364/OE.25.013010.
5
IR-laser assisted additive freeform optics manufacturing.
Sci Rep. 2017 Aug 2;7(1):7145. doi: 10.1038/s41598-017-07446-8.
6
Fine structure of the anterior median eyes of the funnel-web spider Agelena labyrinthica (Araneae: Agelenidae).
Arthropod Struct Dev. 2017 Mar;46(2):196-214. doi: 10.1016/j.asd.2017.01.001. Epub 2017 Feb 10.
7
Image processing for cameras with fiber bundle image relay.
Appl Opt. 2015 Feb 10;54(5):1124-37. doi: 10.1364/AO.54.001124.
9
Medical hyperspectral imaging: a review.
J Biomed Opt. 2014 Jan;19(1):10901. doi: 10.1117/1.JBO.19.1.010901.
10
Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy.
Opt Express. 2010 Jul 5;18(14):14330-44. doi: 10.1364/OE.18.014330.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验