Cao Shun, Wang Taisheng, Sun Qiang, Hu Bingliang, Levy Uriel, Yu Weixing
Opt Express. 2017 Jun 26;25(13):14494-14503. doi: 10.1364/OE.25.014494.
Nowadays, wide-field of view plasmonic structured illumination method (WFPSIM) has been extensively studied and experimentally demonstrated in biological researches. Normally, noble metal structures are used in traditional WFPSIM to support ultra-high wave-vector of SPs and an imaging resolution enhancement of 3-4 folds can be achieved. To further improve the imaging resolution of WFPSIM, we hereby propose a wide-field optical nanoimaging method based on a hybrid graphene on meta-surface structure (GMS) model. It is found that an ultra-high wave-vector of graphene SPs can be excited by a metallic nanoslits array with localized surface plasmon enhancement. As a result, a standing wave surface plasmons (SW-SPs) interference pattern with a period of 11 nm for a 980 nm incident wavelength can be obtained. The potential application of the GMS for wide-field of view super-resolution imaging is discussed followed by simulation results which show that an imaging resolution of sub-10 nm can be achieved. The demonstrated method paves a new route for wide field optical nanoimaging, with applications e.g. in biological research to study biological processes occurring in cell membrane.
如今,宽视场表面等离激元结构照明方法(WFPSIM)在生物学研究中得到了广泛的研究和实验验证。通常,传统的WFPSIM中使用贵金属结构来支持表面等离激元(SPs)的超高波矢,并且可以实现3至4倍的成像分辨率增强。为了进一步提高WFPSIM的成像分辨率,我们在此提出一种基于超表面结构上的混合石墨烯(GMS)模型的宽视场光学纳米成像方法。研究发现,通过具有局域表面等离激元增强作用的金属纳米狭缝阵列可以激发石墨烯表面等离激元的超高波矢。结果,对于980nm的入射波长,可以获得周期为11nm的驻波表面等离激元(SW-SPs)干涉图案。随后讨论了GMS在宽视场超分辨率成像中的潜在应用,模拟结果表明可以实现亚10nm的成像分辨率。所展示的方法为宽视场光学纳米成像开辟了一条新途径,例如在生物学研究中用于研究发生在细胞膜中的生物过程。