Tong Xin, Zhang Deqiang, Charney Nicholas, Jin Ethan, VanDommelen Kyle, Stamper Kenneth, Gupta Neil, Saldate Johnny, Yin Lei
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI.
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
Diabetes. 2017 Oct;66(10):2571-2582. doi: 10.2337/db16-1600. Epub 2017 Aug 8.
Targeted protein degradation through ubiquitination is an important step in the regulation of glucose metabolism. Here, we present evidence that the DDB1-CUL4A ubiquitin E3 ligase functions as a novel metabolic regulator that promotes FOXO1-driven hepatic gluconeogenesis. In vivo, hepatocyte-specific deletion leads to impaired hepatic gluconeogenesis in the mouse liver but protects mice from high-fat diet-induced hyperglycemia. Lack of downregulates FOXO1 protein expression and impairs FOXO1-driven gluconeogenic response. Mechanistically, we discovered that DDB1 enhances FOXO1 protein stability via degrading the circadian protein cryptochrome 1 (CRY1), a known target of DDB1 E3 ligase. In the depletion condition, insulin fails to reduce the nuclear FOXO1 abundance and suppress gluconeogenic gene expression. Chronic depletion of in the mouse liver not only increases FOXO1 protein but also enhances hepatic gluconeogenesis. Thus, we have identified the DDB1-mediated CRY1 degradation as an important target of insulin action on glucose homeostasis.
通过泛素化进行的靶向蛋白质降解是葡萄糖代谢调节中的重要一步。在此,我们提供证据表明,DDB1-CUL4A泛素E3连接酶作为一种新型代谢调节因子,促进FOXO1驱动的肝脏糖异生。在体内,肝细胞特异性缺失会导致小鼠肝脏中肝脏糖异生受损,但可保护小鼠免受高脂饮食诱导的高血糖影响。缺乏会下调FOXO1蛋白表达并损害FOXO1驱动的糖异生反应。从机制上讲,我们发现DDB1通过降解昼夜节律蛋白隐花色素1(CRY1)来增强FOXO1蛋白稳定性,CRY1是DDB1 E3连接酶的已知靶点。在缺失条件下,胰岛素无法降低细胞核中FOXO1的丰度并抑制糖异生基因表达。在小鼠肝脏中慢性缺失不仅会增加FOXO1蛋白,还会增强肝脏糖异生。因此,我们已确定DDB1介导的CRY1降解是胰岛素作用于葡萄糖稳态的重要靶点。