Greenberg Edward F, Vatolin Sergei
1 The Cleveland Clinic Foundation, Department of Translational Hematology and Oncology Research, Taussig Cancer Center , Cleveland, Ohio.
2 The Cleveland Clinic Foundation, Hematology/Oncology Fellowship, Taussig Cancer Center , Cleveland, Ohio.
Rejuvenation Res. 2018 Jun;21(3):225-231. doi: 10.1089/rej.2017.1973. Epub 2017 Sep 25.
Normally aging cells are characterized by an unbalanced mitochondrial dynamic skewed toward punctate mitochondria. Genetic and pharmacological manipulation of mitochondrial fission/fusion cycles can contribute to both accelerated and decelerated cellular or organismal aging. In this work, we connect these experimental data with the symbiotic theory of mitochondrial origin to generate new insight into the evolutionary origin of aging. Mitochondria originated from autotrophic α-proteobacteria during an ancient endosymbiotic event early in eukaryote evolution. To expand beyond individual host cells, dividing α-proteobacteria initiated host cell lysis; apoptosis is a product of this original symbiont cell lytic exit program. Over the course of evolution, the host eukaryotic cell attenuated the harmful effect of symbiotic proto-mitochondria, and modern mitochondria are now functionally interdependent with eukaryotic cells; they retain their own circular genomes and independent replication timing. In nondividing differentiated or multipotent eukaryotic cells, intracellular mitochondria undergo repeated fission/fusion cycles, favoring fission as organisms age. The discordance between cellular quiescence and mitochondrial proliferation generates intracellular stress, eventually leading to a gradual decline in host cell performance and age-related pathology. Hence, aging evolved from a conflict between maintenance of a quiescent, nonproliferative state and the evolutionarily conserved propagation program driving the life cycle of former symbiotic organisms: mitochondria.
正常衰老的细胞具有线粒体动态失衡的特征,倾向于点状线粒体。线粒体分裂/融合循环的基因和药理学操作可导致细胞或生物体加速衰老和延缓衰老。在这项工作中,我们将这些实验数据与线粒体起源的共生理论联系起来,以对衰老的进化起源产生新的见解。线粒体起源于真核生物进化早期的一次古老内共生事件中的自养α-变形菌。为了超越单个宿主细胞进行扩张,正在分裂的α-变形菌引发宿主细胞裂解;细胞凋亡是这种原始共生细胞裂解退出程序的产物。在进化过程中,宿主真核细胞减弱了共生原始线粒体的有害影响,现代线粒体现在在功能上与真核细胞相互依赖;它们保留了自己的环状基因组和独立的复制时间。在不分裂的分化或多能真核细胞中,细胞内线粒体经历反复的分裂/融合循环,随着生物体衰老,分裂更为常见。细胞静止与线粒体增殖之间的不一致会产生细胞内应激,最终导致宿主细胞性能逐渐下降和与年龄相关的病理变化。因此,衰老源于维持静止、非增殖状态与驱动前共生生物(线粒体)生命周期的进化保守繁殖程序之间的冲突。