Suppr超能文献

硼:实现令人兴奋的富金属结构和磁性。

Boron: Enabling Exciting Metal-Rich Structures and Magnetic Properties.

机构信息

Departments of Chemistry, University of California Riverside (UCR) , Riverside, California 92521, United States.

出版信息

Acc Chem Res. 2017 Sep 19;50(9):2317-2325. doi: 10.1021/acs.accounts.7b00268. Epub 2017 Aug 9.

Abstract

Boron's unique chemical properties and its reactions with metals have yielded the large class of metal borides with compositions ranging from the most boron-rich YB (used as monochromator for synchrotron radiation) up to the most metal-rich NdFeB (the best permanent magnet to date). The excellent magnetic properties of the latter compound originate from its unique crystal structure to which the presence of boron is essential. In general, knowing the crystal structure of any given extended solid is the prerequisite to understanding its physical properties and eventually predicting new synthetic targets with desirable properties. The ability of boron to form strong chemical bonds with itself and with metallic elements has enabled us to construct new structures with exciting properties. In recent years, we have discovered new boride structures containing some unprecedented boron fragments (trigonal planar B units, planar B rings) and low-dimensional substructures of magnetically active elements (ladders, scaffolds, chains of triangles). The new boride structures have led to new superconducting materials (e.g., NbRuB) and to new itinerant magnetic materials (e.g., NbFeIrB). The study of boride compounds containing chains (Fe-chains in antiferromagnetic ScFeRuB), ladders (Fe-ladders in ferromagnetic TiFeRhB), and chains of triangles (Cr chains in ferrimagnetic and frustrated TiCrIrB) of magnetically active elements allowed us to gain a deep understanding of the factors (using density functional theory calculations) that can affect magnetic ordering of such low-dimensional magnetic units. We discovered that the magnetic properties of phases containing these magnetic subunits can be drastically tuned by chemical substitution within the metallic nonmagnetic network. For example, the small hysteresis (measure of magnetic energy storage) of TiFeRhB can be successively increased up to 24-times by gradually substituting Ru for Rh, a result that was even surpassed (up to 54-times the initial value) for Ru/Ir substitutions. Also, the type of long-range magnetic interactions could be drastically tuned by appropriate substitutions in the metallic nonmagnetic network as demonstrated using both experimental and theoretical methods. It turned out that Ru-rich and valence electron poor metal borides adopting the TiCoB or the ThFe structure types have dominating antiferromagnetic interactions, while in Rh-rich (or Ir-rich) and valence electron rich phases ferromagnetic interactions prevail, as found, for example, in the ScFeRuRhB and FeRhRuB series. Fascinatingly, boron clusters (e.g., B rings) even directly interact in some cases with the magnetic subunits, an interaction which was found to favor the Fe-Fe magnetic exchange interactions in the ferromagnetic NbFeIrB. Using less expensive transition metals, we have recently predicted new itinerant magnets, the experimental proof of which is still pending. Furthermore, new structures have been discovered, all of which are being studied experimentally and computationally with the aim of finding new superconductors, magnets, and mechanically hard materials. A new direction is being pursued in our group, as binary and ternary transition metal borides show great promise as efficient water splitting electrocatalysts at the micro- and nanoscale.

摘要

硼的独特化学性质及其与金属的反应产生了具有多种组成的金属硼化物,从最富硼的 YB(用作同步辐射单色仪)到最富金属的 NdFeB(迄今为止最好的永磁体)。后者化合物的优异磁性源于其独特的晶体结构,其中硼的存在是必不可少的。一般来说,了解任何给定的扩展固体的晶体结构是理解其物理性质并最终预测具有理想性质的新合成目标的前提。硼与自身和金属元素形成强化学键的能力使我们能够构建具有令人兴奋特性的新结构。近年来,我们发现了具有一些前所未有的硼片段(三角平面 B 单元、平面 B 环)和磁活性元素的低维亚结构(梯、支架、三角形链)的新型硼化物结构。新型硼化物结构导致了新的超导材料(例如 NbRuB)和新的巡游磁材料(例如 NbFeIrB)的出现。对含有链(反铁磁 ScFeRuB 中的 Fe 链)、梯(铁磁 TiFeRhB 中的 Fe 梯)和三角形链(铁磁和受挫 TiCrIrB 中的 Cr 链)的硼化物化合物的研究使我们深入了解了可能影响这些低维磁单元磁序的因素(使用密度泛函理论计算)。我们发现,通过在金属非磁网络中进行化学取代,可以大大调节含有这些磁性亚单位的相的磁性。例如,TiFeRhB 的小磁滞(衡量磁储能的指标)可以通过逐渐用 Ru 取代 Rh 而成功增加 24 倍,这一结果甚至超过了 Ru/Ir 取代(高达初始值的 54 倍)。此外,通过实验和理论方法都证明,通过在金属非磁网络中进行适当的取代,可以大大调节长程磁相互作用的类型。结果表明,采用 TiCoB 或 ThFe 结构类型的富 Ru 和价电子贫金属硼化物具有主导的反铁磁相互作用,而富 Rh(或 Ir)和价电子富相则具有铁磁相互作用,例如在 ScFeRuRhB 和 FeRhRuB 系列中发现的。有趣的是,硼簇(例如 B 环)甚至在某些情况下直接与磁性亚单位相互作用,这种相互作用被发现有利于铁-铁磁交换相互作用在铁磁 NbFeIrB 中。使用较便宜的过渡金属,我们最近预测了新的巡游磁体,但其实验证明仍有待确定。此外,已经发现了新的结构,所有这些结构都在进行实验和计算研究,目的是寻找新的超导、磁体和机械硬材料。我们小组正在探索一个新的方向,因为二元和三元过渡金属硼化物在微纳尺度上作为高效水分解电催化剂具有很大的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验