Suppr超能文献

广撒网:低维块体材料的理性综合设计。

Casting a Wider Net: Rational Synthesis Design of Low-Dimensional Bulk Materials.

机构信息

Department of Chemistry & Biochemistry, The University of Texas at Dallas , Richardson, Texas 75080, United States.

出版信息

Acc Chem Res. 2018 Jan 16;51(1):12-20. doi: 10.1021/acs.accounts.7b00461. Epub 2017 Dec 14.

Abstract

The discovery of novel magnetic and electronic properties in low-dimensional materials has led to the pursuit of hierarchical materials with specific substructures. Low-dimensional solids are highly anisotropic by nature and show promise in new quantum materials leading to exotic physical properties not realized in three-dimensional materials. We have the opportunity to extend our synthetic strategy of the flux-growth method to designing single crystalline low-dimensional materials in bulk. The goal of this Account is to highlight the synthesis and physical properties of several low-dimensional intermetallic compounds containing specific structural motifs that are linked to desirable magnetic and electrical properties. We turned our efforts toward intermetallic compounds consisting of antimony nets because they are closely linked to properties such as high carrier mobility (the velocity of an electron moving through a material under a magnetic field) and large magnetoresistance (the change in resistivity with an applied magnetic field), both of which are desirable properties for technological applications. The SmSb structure type is of particular interest because it is comprised of rectangular antimony nets and rare earth ions stacked between the antimony nets in a square antiprismatic environment. LnSb (Ln = La-Nd, Sm) have been shown to be highly anisotropic with SmSb exhibiting magnetoresistance of over 50000% for H∥c axis and ∼2400% for H∥ab. Using this structure type as an initial building block, we envision the insertion of transition metal substructures into the SmSb structure type to produce ternary materials. We describe compounds adopting the HfCuSi structure type as an insertion of a tetrahedral transition metal-antimony subunit into the LnSb host structure. We studied LnNiSb (Ln = Y, Gd-Er), where positive magnetoresistance reaching above 100% was found for the Y, Gd, and Ho analogues. We investigated the influence of the transition metal sublattice by substituting Ni into Ce(CuNi)Sb (y < 0.8) and found that the material is highly anisotropic and metamagnetic transitions appear at ∼0.5 and 1 T in compounds with higher Ni concentration. Metamagnetism is characterized by a sharp increase in the magnetic response of a material with increasing applied magnetic field, which was also observed in LnSb (Ln = Ce-Nd). We also endeavored to study materials that possess a transition metal sublattice with the potential for geometric frustration. An example is the LaFeSb structure type, which consists of antimony square nets and an iron-based network arranged in nearly equilateral triangles, a feature found in magnetically frustrated systems. We discovered spin glass behavior in LnFeSb (Ln = La-Nd, Sm) and evidence that the transition metal sublattice contributes to the magnetic interactions of LnFeSb. We investigated the magnetic properties of PrFeCoSb (x < 2.3) and found that as the Co concentration increases, a second magnetic transition leads from a localized to an itinerant system. The LaFeSb structure type is quite robust and allows for the incorporation of other transition metals, thereby making it an excellent candidate to study competing magnetic interactions in lanthanide-containing intermetallic compounds. In this manuscript, we aim to share our experiences of bulk intermetallic compounds to inspire the development of new low-dimensional materials.

摘要

在低维材料中发现的新型磁性和电子特性促使人们追求具有特定亚结构的分层材料。低维固体本质上具有各向异性,并有望在新的量子材料中实现奇异的物理特性,这些特性在三维材料中无法实现。我们有机会将通量生长方法的合成策略扩展到在块状中设计单晶低维材料。本报告的目的是强调几种包含特定结构基序的低维金属间化合物的合成和物理性质,这些基序与理想的磁性和电特性有关。我们将注意力转向由锑网组成的金属间化合物,因为它们与高载流子迁移率(电子在磁场中移动的速度)和大磁电阻(电阻率随外加磁场的变化)等特性密切相关,这些特性都是技术应用所需要的。SmSb 结构类型特别有趣,因为它由矩形锑网和稀土离子组成,这些离子在锑网之间以正方形反棱柱体的环境堆叠。已经证明 LnSb(Ln = La-Nd、Sm)具有各向异性,SmSb 在 H∥c 轴方向的磁电阻超过 50000%,在 H∥ab 方向的磁电阻约为 2400%。我们以这种结构类型为初始构建块,设想将过渡金属亚结构插入 SmSb 结构类型中,以生成三元材料。我们描述了采用 HfCuSi 结构类型的化合物,其中将四面体过渡金属-锑亚基插入 LnSb 主体结构中。我们研究了 LnNiSb(Ln = Y、Gd-Er),其中 Y、Gd 和 Ho 类似物的正磁电阻超过 100%。我们研究了过渡金属亚晶格的影响,通过将 Ni 取代 Ce(CuNi)Sb(y < 0.8),并发现当 Ni 浓度较高时,材料具有各向异性并且在约 0.5 和 1 T 出现金属转变。金属转变的特点是材料的磁响应随外加磁场的增加而急剧增加,这种现象也在 LnSb(Ln = Ce-Nd)中观察到。我们还努力研究具有潜在几何各向异性的过渡金属亚晶格的材料。LaFeSb 结构类型就是一个例子,它由锑正方形网和近乎等边三角形排列的铁基网络组成,这是在磁各向异性系统中发现的特征。我们在 LnFeSb(Ln = La-Nd、Sm)中发现了自旋玻璃行为,并证明了过渡金属亚晶格对 LnFeSb 的磁相互作用有贡献。我们研究了 PrFeCoSb(x < 2.3)的磁性,并发现随着 Co 浓度的增加,第二个磁转变导致从局域系统到巡游系统。LaFeSb 结构类型非常坚固,可以容纳其他过渡金属,因此它是研究含镧金属间化合物中竞争磁相互作用的理想候选材料。在本文中,我们旨在分享我们对块状金属间化合物的经验,以激发新型低维材料的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验