Li Hongyang, Chen Guxian, Zhang Kailong, Wang Liangbiao, Li Gaoran
MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China.
Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, School of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, 223003, P. R. China.
Adv Sci (Weinh). 2023 Nov;10(32):e2303830. doi: 10.1002/advs.202303830. Epub 2023 Sep 25.
The sluggish kinetics of sulfur conversions have long been hindering the implementation of fast and efficient sulfur electrochemistry in lithium-sulfur (Li-S) batteries. In this regard, herein the unique chromium boride (CrB) is developed via a well-confined mild-temperature thermal reaction to serve as an advanced sulfur electrocatalyst. Its interstitial-alloy nature features excellent conductivity, while the nano-lamination architecture affords abundant active sites for host-guest interactions. More importantly, the CrB nanocatalyst demonstrates a dual sulphophilicity with simultaneous Cr─S and B─S bondage for establishing strong interactions with the intermediate polysulfides. As a result, significant stabilization and promotion of sulfur redox behavior can be achieved, enabling an excellent Li-S cell cyclability with a minimum capacity fading rate of 0.0176% per cycle over 2000 cycles and a favorable rate capability up to 7 C. Additionally, a high areal capacity of 5.2 mAh cm , and decent cycling and rate performances are still attainable under high sulfur loading and low electrolyte dosage. This work offers a facile approach and instructive insights into metal boride sulfur electrocatalyst, holding a good promise for pursuing high-efficiency sulfur electrochemistry and high-performance Li-S batteries.
硫转化的缓慢动力学长期以来一直阻碍着锂硫(Li-S)电池中快速高效硫电化学的实现。在这方面,本文通过一种受限温和温度热反应开发了独特的硼化铬(CrB),用作先进的硫电催化剂。其间隙合金性质具有优异的导电性,而纳米层状结构为主体-客体相互作用提供了丰富的活性位点。更重要的是,CrB纳米催化剂表现出双重亲硫性,同时具有Cr─S和B─S键,用于与中间多硫化物建立强相互作用。结果,可以实现硫氧化还原行为的显著稳定和促进,使Li-S电池具有出色的循环稳定性,在2000次循环中每循环的最小容量衰减率为0.0176%,并且在高达7 C的倍率下具有良好的倍率性能。此外,在高硫负载和低电解液用量下,仍可实现5.2 mAh cm 的高面积容量以及良好的循环和倍率性能。这项工作为金属硼化物硫电催化剂提供了一种简便的方法和有启发性的见解,对于追求高效硫电化学和高性能Li-S电池具有良好的前景。