Suppr超能文献

Aβ的聚集与纤维结构以及Aβ的聚集与纤维结构 。(感觉原文表述重复,不太准确,你可再检查下原文是否有误)

Aggregation and Fibril Structure of Aβ and Aβ.

作者信息

Silvers Robert, Colvin Michael T, Frederick Kendra K, Jacavone Angela C, Lindquist Susan, Linse Sara, Griffin Robert G

机构信息

Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.

Whitehead Institute for Biomedical Research , Nine Cambridge Center, Cambridge, Massachusetts 02142, United States.

出版信息

Biochemistry. 2017 Sep 12;56(36):4850-4859. doi: 10.1021/acs.biochem.7b00729. Epub 2017 Aug 30.

Abstract

A mechanistic understanding of Aβ aggregation and high-resolution structures of Aβ fibrils and oligomers are vital to elucidating relevant details of neurodegeneration in Alzheimer's disease, which will facilitate the rational design of diagnostic and therapeutic protocols. The most detailed and reproducible insights into structure and kinetics have been achieved using Aβ peptides produced by recombinant expression, which results in an additional methionine at the N-terminus. While the length of the C-terminus is well established to have a profound impact on the peptide's aggregation propensity, structure, and neurotoxicity, the impact of the N-terminal methionine on the aggregation pathways and structure is unclear. For this reason, we have developed a protocol to produce recombinant Aβ, sans the N-terminal methionine, using an N-terminal small ubiquitin-like modifier-Aβ fusion protein in reasonable yield, with which we compared aggregation kinetics with Aβ containing the additional methionine residue. The data revealed that Aβ and Aβ aggregate with similar rates and by the same mechanism, in which the generation of new aggregates is dominated by secondary nucleation of monomers on the surface of fibrils. We also recorded magic angle spinning nuclear magnetic resonance spectra that demonstrated that excellent spectral resolution is maintained with both Aβ and Aβ and that the chemical shifts are virtually identical in dipolar recoupling experiments that provide information about rigid residues. Collectively, these results indicate that the structure of the fibril core is unaffected by N-terminal methionine. This is consistent with the recent structures of Aβ in which M0 is located at the terminus of a disordered 14-amino acid N-terminal tail.

摘要

对β-淀粉样蛋白(Aβ)聚集的机制理解以及Aβ原纤维和寡聚体的高分辨率结构对于阐明阿尔茨海默病神经退行性变的相关细节至关重要,这将有助于合理设计诊断和治疗方案。使用重组表达产生的Aβ肽获得了关于结构和动力学最详细且可重复的见解,这导致在N端额外出现一个甲硫氨酸。虽然C端长度对肽的聚集倾向、结构和神经毒性有深远影响已得到充分证实,但N端甲硫氨酸对聚集途径和结构的影响尚不清楚。因此,我们开发了一种方案,使用N端小泛素样修饰物-Aβ融合蛋白以合理产率生产不含N端甲硫氨酸的重组Aβ,并将其聚集动力学与含有额外甲硫氨酸残基的Aβ进行比较。数据显示,Aβ和Aβ以相似的速率并通过相同的机制聚集,其中新聚集体的产生主要由原纤维表面单体的二次成核主导。我们还记录了魔角旋转核磁共振谱,结果表明Aβ和Aβ都保持了出色的谱分辨率,并且在提供有关刚性残基信息的偶极重耦合实验中化学位移几乎相同。总体而言,这些结果表明原纤维核心结构不受N端甲硫氨酸的影响。这与最近的Aβ结构一致,其中M0位于无序的14个氨基酸N端尾巴的末端。

相似文献

1
Aggregation and Fibril Structure of Aβ and Aβ.
Biochemistry. 2017 Sep 12;56(36):4850-4859. doi: 10.1021/acs.biochem.7b00729. Epub 2017 Aug 30.
2
High resolution structural characterization of Aβ42 amyloid fibrils by magic angle spinning NMR.
J Am Chem Soc. 2015 Jun 17;137(23):7509-18. doi: 10.1021/jacs.5b03997. Epub 2015 Jun 4.
3
Atomic Resolution Structure of Monomorphic Aβ42 Amyloid Fibrils.
J Am Chem Soc. 2016 Aug 3;138(30):9663-74. doi: 10.1021/jacs.6b05129. Epub 2016 Jul 14.
5
Cross-Seeding Controls Aβ Fibril Populations and Resulting Functions.
J Phys Chem B. 2022 Mar 24;126(11):2217-2229. doi: 10.1021/acs.jpcb.1c09995. Epub 2022 Mar 11.
6
Aggregation States of A, A and Ap Amyloid Beta Peptides: A SANS Study.
Int J Mol Sci. 2019 Aug 24;20(17):4126. doi: 10.3390/ijms20174126.
7
Dissection of the key steps of amyloid-β peptide 1-40 fibrillogenesis.
Int J Biol Macromol. 2020 Dec 1;164:2240-2246. doi: 10.1016/j.ijbiomac.2020.08.023. Epub 2020 Aug 6.
9
Aβ41 Aggregates More Like Aβ40 than Like Aβ42: In Silico and in Vitro Study.
J Phys Chem B. 2016 Aug 4;120(30):7371-9. doi: 10.1021/acs.jpcb.6b06368. Epub 2016 Jul 21.
10
The binding of apolipoprotein E to oligomers and fibrils of amyloid-β alters the kinetics of amyloid aggregation.
Biochemistry. 2014 Oct 14;53(40):6323-31. doi: 10.1021/bi5008172. Epub 2014 Sep 25.

引用本文的文献

1
Structural characterization of E22G Aβ fibrils H detected MAS NMR.
Phys Chem Chem Phys. 2024 May 22;26(20):14664-14674. doi: 10.1039/d4cp00553h.
2
Maturation-dependent changes in the size, structure and seeding capacity of Aβ42 amyloid fibrils.
Commun Biol. 2024 Feb 6;7(1):153. doi: 10.1038/s42003-024-05858-7.
3
Simple, Reliable Protocol for High-Yield Solubilization of Seedless Amyloid-β Monomer.
ACS Chem Neurosci. 2023 Jan 4;14(1):53-71. doi: 10.1021/acschemneuro.2c00411. Epub 2022 Dec 13.
4
Amyloid-β peptide 37, 38 and 40 individually and cooperatively inhibit amyloid-β 42 aggregation.
Chem Sci. 2022 Feb 7;13(8):2423-2439. doi: 10.1039/d1sc02990h. eCollection 2022 Feb 23.
5
A Disulfide-Stabilized Aβ that Forms Dimers but Does Not Form Fibrils.
Biochemistry. 2022 Feb 15;61(4):252-264. doi: 10.1021/acs.biochem.1c00739. Epub 2022 Jan 26.
6
H detection and dynamic nuclear polarization-enhanced NMR of Aβ fibrils.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2114413119.
7
Charge Regulation during Amyloid Formation of α-Synuclein.
J Am Chem Soc. 2021 May 26;143(20):7777-7791. doi: 10.1021/jacs.1c01925. Epub 2021 May 17.
8
Structural details of amyloid β oligomers in complex with human prion protein as revealed by solid-state MAS NMR spectroscopy.
J Biol Chem. 2021 Jan-Jun;296:100499. doi: 10.1016/j.jbc.2021.100499. Epub 2021 Mar 3.
9
A dopamine metabolite stabilizes neurotoxic amyloid-β oligomers.
Commun Biol. 2021 Jan 4;4(1):19. doi: 10.1038/s42003-020-01490-3.
10
The role of fibril structure and surface hydrophobicity in secondary nucleation of amyloid fibrils.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25272-25283. doi: 10.1073/pnas.2002956117. Epub 2020 Oct 1.

本文引用的文献

2
Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E4976-84. doi: 10.1073/pnas.1600749113. Epub 2016 Jul 28.
3
Atomic Resolution Structure of Monomorphic Aβ42 Amyloid Fibrils.
J Am Chem Soc. 2016 Aug 3;138(30):9663-74. doi: 10.1021/jacs.6b05129. Epub 2016 Jul 14.
4
Molecular mechanisms of protein aggregation from global fitting of kinetic models.
Nat Protoc. 2016 Feb;11(2):252-72. doi: 10.1038/nprot.2016.010. Epub 2016 Jan 7.
5
N-Terminal Extensions Retard Aβ42 Fibril Formation but Allow Cross-Seeding and Coaggregation with Aβ42.
J Am Chem Soc. 2015 Nov 25;137(46):14673-85. doi: 10.1021/jacs.5b07849. Epub 2015 Nov 17.
6
High resolution structural characterization of Aβ42 amyloid fibrils by magic angle spinning NMR.
J Am Chem Soc. 2015 Jun 17;137(23):7509-18. doi: 10.1021/jacs.5b03997. Epub 2015 Jun 4.
7
A routine method for cloning, expressing and purifying Aβ(1-42) for structural NMR studies.
Amino Acids. 2014 Oct;46(10):2415-26. doi: 10.1007/s00726-014-1796-x. Epub 2014 Jul 16.
8
Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides.
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9384-9. doi: 10.1073/pnas.1401564111. Epub 2014 Jun 17.
9
Secondary structure in the core of amyloid fibrils formed from human β₂m and its truncated variant ΔN6.
J Am Chem Soc. 2014 Apr 30;136(17):6313-25. doi: 10.1021/ja4126092. Epub 2014 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验