Suppr超能文献

纳米狭缝中单条天然染色质纤维的电泳拉伸与成像

Electrophoretic stretching and imaging of single native chromatin fibers in nanoslits.

作者信息

Yeh Jia-Wei, Szeto Kylan

机构信息

School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA.

出版信息

Biomicrofluidics. 2017 Jul 25;11(4):044108. doi: 10.1063/1.4996340. eCollection 2017 Jul.

Abstract

Stretching single chromosomal DNA fibers in nanofluidic devices has become a valuable tool for studying the genome and more recently the epigenome. Although nanofluidic technology has been extensively used in single molecular DNA analysis, compared to bare DNA, much less work has been done to elongate chromatin, and only a few studies utilize more biologically relevant samples such as native eukaryotic chromatin. Here, we provide a method for stretching and imaging individual chromatin fibers within a micro- and nanofluidic device. This device was used to electrophoretically stretch and image single native chromatin fibers extracted from human cancer cells (HeLa cells) by attaching the chromatin to microspheres held at the entrance of a nanoslit. To further demonstrate the potential of this device in epigenetics, histone modification H3k79me2 was optically detected by fluorescence microscopy.

摘要

在纳米流体装置中拉伸单个染色体DNA纤维已成为研究基因组以及最近研究表观基因组的一种有价值的工具。尽管纳米流体技术已广泛应用于单分子DNA分析,但与裸DNA相比,在拉长染色质方面所做的工作要少得多,并且只有少数研究使用了更具生物学相关性的样本,如天然真核染色质。在此,我们提供了一种在微流控和纳米流控装置中拉伸和成像单个染色质纤维的方法。该装置用于通过将染色质附着到纳米狭缝入口处的微球上,对从人类癌细胞(HeLa细胞)中提取的单个天然染色质纤维进行电泳拉伸和成像。为了进一步证明该装置在表观遗传学中的潜力,通过荧光显微镜对组蛋白修饰H3k79me2进行了光学检测。

相似文献

1
Electrophoretic stretching and imaging of single native chromatin fibers in nanoslits.
Biomicrofluidics. 2017 Jul 25;11(4):044108. doi: 10.1063/1.4996340. eCollection 2017 Jul.
2
A device for extraction, manipulation and stretching of DNA from single human chromosomes.
Lab Chip. 2011 Apr 21;11(8):1431-3. doi: 10.1039/c0lc00603c. Epub 2011 Feb 25.
3
Ordered arrays of native chromatin molecules for high-resolution imaging and analysis.
ACS Nano. 2012 Sep 25;6(9):7928-34. doi: 10.1021/nn3023624. Epub 2012 Aug 1.
4
Stretching of Tethered DNA in Nanoslits.
ACS Macro Lett. 2016 Oct 18;5(10):1114-1118. doi: 10.1021/acsmacrolett.6b00639. Epub 2016 Sep 19.
6
Evaporation-driven transport-control of small molecules along nanoslits.
Nat Commun. 2021 Feb 26;12(1):1336. doi: 10.1038/s41467-021-21584-8.
7
Stretching chromatin through confinement.
Lab Chip. 2009 Oct 7;9(19):2772-4. doi: 10.1039/b909217j. Epub 2009 Aug 14.
8
Super-resolution imaging of linearized chromatin in tunable nanochannels.
Nanoscale Horiz. 2023 Jul 24;8(8):1043-1053. doi: 10.1039/d3nh00096f.
10
Single-molecule force spectroscopy on histone H4 tail-cross-linked chromatin reveals fiber folding.
J Biol Chem. 2017 Oct 20;292(42):17506-17513. doi: 10.1074/jbc.M117.791830. Epub 2017 Aug 30.

引用本文的文献

1
Hydrogel droplet single-cell processing: DNA purification, handling, release, and on-chip linearization.
Biomicrofluidics. 2018 Mar 14;12(2):024107. doi: 10.1063/1.5020571. eCollection 2018 Mar.
2
Transverse dielectrophoretic-based DNA nanoscale confinement.
Sci Rep. 2018 Apr 13;8(1):5981. doi: 10.1038/s41598-018-24132-5.

本文引用的文献

1
Stretching of Tethered DNA in Nanoslits.
ACS Macro Lett. 2016 Oct 18;5(10):1114-1118. doi: 10.1021/acsmacrolett.6b00639. Epub 2016 Sep 19.
2
Measurements of DNA barcode label separations in nanochannels from time-series data.
Biomicrofluidics. 2015 Dec 29;9(6):064119. doi: 10.1063/1.4938732. eCollection 2015 Nov.
3
Visualizing the entire DNA from a chromosome in a single frame.
Biomicrofluidics. 2015 Aug 5;9(4):044114. doi: 10.1063/1.4923262. eCollection 2015 Jul.
4
DNA combing on low-pressure oxygen plasma modified polysilsesquioxane substrates for single-molecule studies.
Biomicrofluidics. 2014 Aug 6;8(5):052102. doi: 10.1063/1.4892515. eCollection 2014 Sep.
5
Evolution. An epigenetic window into the past?
Science. 2014 Aug 1;345(6196):511-2. doi: 10.1126/science.1256515.
6
Fracture-based fabrication of normally closed, adjustable, and fully reversible microscale fluidic channels.
Small. 2014 Oct 15;10(19):4020-4029. doi: 10.1002/smll.201400147. Epub 2014 Jun 18.
7
Nanophotonic trapping for precise manipulation of biomolecular arrays.
Nat Nanotechnol. 2014 Jun;9(6):448-52. doi: 10.1038/nnano.2014.79. Epub 2014 Apr 28.
8
Direct optical mapping of transcription factor binding sites on field-stretched λ-DNA in nanofluidic devices.
Nucleic Acids Res. 2014 Jun;42(10):e85. doi: 10.1093/nar/gku254. Epub 2014 Apr 21.
10
Toward single-molecule optical mapping of the epigenome.
ACS Nano. 2014 Jan 28;8(1):14-26. doi: 10.1021/nn4050694. Epub 2013 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验