Department of Astronomy and Theoretical Physics, Lund University , Lund, Sweden.
Department of Physics, University of Gothenburg , Gothenburg, Sweden.
Biomicrofluidics. 2015 Aug 5;9(4):044114. doi: 10.1063/1.4923262. eCollection 2015 Jul.
The contiguity and phase of sequence information are intrinsic to obtain complete understanding of the genome and its relationship to phenotype. We report the fabrication and application of a novel nanochannel design that folds megabase lengths of genomic DNA into a systematic back-and-forth meandering path. Such meandering nanochannels enabled us to visualize the complete 5.7 Mbp (1 mm) stained DNA length of a Schizosaccharomyces pombe chromosome in a single frame of a CCD. We were able to hold the DNA in situ while implementing partial denaturation to obtain a barcode pattern that we could match to a reference map using the Poland-Scheraga model for DNA melting. The facility to compose such long linear lengths of genomic DNA in one field of view enabled us to directly visualize a repeat motif, count the repeat unit number, and chart its location in the genome by reference to unique barcode motifs found at measurable distances from the repeat. Meandering nanochannel dimensions can easily be tailored to human chromosome scales, which would enable the whole genome to be visualized in seconds.
序列信息的连续性和相位对于全面了解基因组及其与表型的关系至关重要。我们报告了一种新型纳米通道设计的制造和应用,该设计将兆碱基长度的基因组 DNA 折叠成系统的来回曲折路径。这种曲折的纳米通道使我们能够在 CCD 的单个帧中可视化完整的 5.7 Mbp(1 毫米)染色 DNA 长度的酿酒酵母染色体。我们能够在原位保持 DNA 的同时进行部分变性,以获得条形码模式,然后使用 Poland-Scheraga 模型进行 DNA 融解,将其与参考图谱匹配。将如此长的线性基因组 DNA 片段组合在一个视场中,使我们能够直接可视化重复基序,计算重复单元数,并通过参考可测量距离处的独特条形码基序来确定其在基因组中的位置。曲折纳米通道的尺寸可以轻松调整到人类染色体的规模,这将使整个基因组能够在几秒钟内可视化。