Suppr超能文献

在单个框架中可视化染色体的整条 DNA。

Visualizing the entire DNA from a chromosome in a single frame.

机构信息

Department of Astronomy and Theoretical Physics, Lund University , Lund, Sweden.

Department of Physics, University of Gothenburg , Gothenburg, Sweden.

出版信息

Biomicrofluidics. 2015 Aug 5;9(4):044114. doi: 10.1063/1.4923262. eCollection 2015 Jul.

Abstract

The contiguity and phase of sequence information are intrinsic to obtain complete understanding of the genome and its relationship to phenotype. We report the fabrication and application of a novel nanochannel design that folds megabase lengths of genomic DNA into a systematic back-and-forth meandering path. Such meandering nanochannels enabled us to visualize the complete 5.7 Mbp (1 mm) stained DNA length of a Schizosaccharomyces pombe chromosome in a single frame of a CCD. We were able to hold the DNA in situ while implementing partial denaturation to obtain a barcode pattern that we could match to a reference map using the Poland-Scheraga model for DNA melting. The facility to compose such long linear lengths of genomic DNA in one field of view enabled us to directly visualize a repeat motif, count the repeat unit number, and chart its location in the genome by reference to unique barcode motifs found at measurable distances from the repeat. Meandering nanochannel dimensions can easily be tailored to human chromosome scales, which would enable the whole genome to be visualized in seconds.

摘要

序列信息的连续性和相位对于全面了解基因组及其与表型的关系至关重要。我们报告了一种新型纳米通道设计的制造和应用,该设计将兆碱基长度的基因组 DNA 折叠成系统的来回曲折路径。这种曲折的纳米通道使我们能够在 CCD 的单个帧中可视化完整的 5.7 Mbp(1 毫米)染色 DNA 长度的酿酒酵母染色体。我们能够在原位保持 DNA 的同时进行部分变性,以获得条形码模式,然后使用 Poland-Scheraga 模型进行 DNA 融解,将其与参考图谱匹配。将如此长的线性基因组 DNA 片段组合在一个视场中,使我们能够直接可视化重复基序,计算重复单元数,并通过参考可测量距离处的独特条形码基序来确定其在基因组中的位置。曲折纳米通道的尺寸可以轻松调整到人类染色体的规模,这将使整个基因组能够在几秒钟内可视化。

相似文献

1
Visualizing the entire DNA from a chromosome in a single frame.
Biomicrofluidics. 2015 Aug 5;9(4):044114. doi: 10.1063/1.4923262. eCollection 2015 Jul.
2
How nanochannel confinement affects the DNA melting transition within the Poland-Scheraga model.
J Chem Phys. 2015 Sep 21;143(11):115101. doi: 10.1063/1.4930220.
3
Tunable Confinement for Bridging Single-Cell Manipulation and Single-Molecule DNA Linearization.
Small. 2018 Apr;14(17):e1800229. doi: 10.1002/smll.201800229. Epub 2018 Mar 25.
5
Topological events in single molecules of E. coli DNA confined in nanochannels.
Analyst. 2015 Jul 21;140(14):4887-94. doi: 10.1039/c5an00343a. Epub 2015 May 20.
6
DNA confinement in nanochannels: physics and biological applications.
Rep Prog Phys. 2012 Oct;75(10):106601. doi: 10.1088/0034-4885/75/10/106601. Epub 2012 Sep 13.
7
Denaturation mapping of Saccharomyces cerevisiae.
Lab Chip. 2012 Sep 21;12(18):3314-21. doi: 10.1039/c2lc40504k. Epub 2012 Jul 23.
8
Fabrication of a Novel Nanofluidic Device Featuring ZnO Nanochannels.
ACS Omega. 2019 Dec 13;5(7):3144-3150. doi: 10.1021/acsomega.9b02524. eCollection 2020 Feb 25.
9
DNA in nanochannels--directly visualizing genomic information.
Chem Soc Rev. 2010 Mar;39(3):985-99. doi: 10.1039/b912918a. Epub 2010 Jan 25.
10
BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.
Plant Biotechnol J. 2016 Jul;14(7):1523-31. doi: 10.1111/pbi.12513. Epub 2016 Jan 23.

引用本文的文献

1
Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale.
Essays Biochem. 2021 Apr 16;65(1):51-66. doi: 10.1042/EBC20200021.
2
Enzyme-free optical DNA mapping of the human genome using competitive binding.
Nucleic Acids Res. 2019 Sep 5;47(15):e89. doi: 10.1093/nar/gkz489.
3
Hydrogel droplet single-cell processing: DNA purification, handling, release, and on-chip linearization.
Biomicrofluidics. 2018 Mar 14;12(2):024107. doi: 10.1063/1.5020571. eCollection 2018 Mar.
4
Single-molecule DNA-mapping and whole-genome sequencing of individual cells.
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11192-11197. doi: 10.1073/pnas.1804194115. Epub 2018 Oct 15.
5
Electrophoretic stretching and imaging of single native chromatin fibers in nanoslits.
Biomicrofluidics. 2017 Jul 25;11(4):044108. doi: 10.1063/1.4996340. eCollection 2017 Jul.
6
Dynamic simulations show repeated narrowing maximizes DNA linearization in elastomeric nanochannels.
Biomicrofluidics. 2016 Nov 23;10(6):064108. doi: 10.1063/1.4967963. eCollection 2016 Nov.

本文引用的文献

1
A fast and scalable kymograph alignment algorithm for nanochannel-based optical DNA mappings.
PLoS One. 2015 Apr 13;10(4):e0121905. doi: 10.1371/journal.pone.0121905. eCollection 2015.
2
DNA sequence alignment by microhomology sampling during homologous recombination.
Cell. 2015 Feb 26;160(5):856-869. doi: 10.1016/j.cell.2015.01.029. Epub 2015 Feb 12.
3
Direct optical mapping of transcription factor binding sites on field-stretched λ-DNA in nanofluidic devices.
Nucleic Acids Res. 2014 Jun;42(10):e85. doi: 10.1093/nar/gku254. Epub 2014 Apr 21.
4
Presentation of large DNA molecules for analysis as nanoconfined dumbbells.
Macromolecules. 2013 Oct 22;46(20):8356-8368. doi: 10.1021/ma400926h.
5
Reconstructing complex regions of genomes using long-read sequencing technology.
Genome Res. 2014 Apr;24(4):688-96. doi: 10.1101/gr.168450.113. Epub 2014 Jan 13.
7
Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4893-8. doi: 10.1073/pnas.1214570110. Epub 2013 Mar 11.
8
Denaturation mapping of Saccharomyces cerevisiae.
Lab Chip. 2012 Sep 21;12(18):3314-21. doi: 10.1039/c2lc40504k. Epub 2012 Jul 23.
10
A single-step competitive binding assay for mapping of single DNA molecules.
Biochem Biophys Res Commun. 2012 Jan 6;417(1):404-8. doi: 10.1016/j.bbrc.2011.11.128. Epub 2011 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验