Yeh Jia-Wei, Szeto Kylan
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.
Department of Physics, University of California, San Diego, La Jolla, California 92122, United States.
ACS Macro Lett. 2016 Oct 18;5(10):1114-1118. doi: 10.1021/acsmacrolett.6b00639. Epub 2016 Sep 19.
External forces and confinement are two fundamental and complementary approaches for biopolymer stretching. By employing micro- and nanofluidics, we study the force-extension dynamics by simultaneously applying external forces and confinement to single-DNA molecules. In particular, we apply external electric fields to stretch single DNA molecules that are attached to microspheres anchored at a nanoslit entrance. Using this method, we measure the force-extension relation of tethered DNA and describe this relation with modified wormlike chain models. This allowed experimental validations of several theoretical predictions, including the increase in the global persistence length of confined DNA with increasing degree of confinement and the "confined Pincus" regime in slit confinement.
外力和限制是生物聚合物拉伸的两种基本且互补的方法。通过使用微流体和纳流体技术,我们通过同时对单个DNA分子施加外力和限制来研究力-伸长动力学。具体而言,我们施加外部电场来拉伸附着在锚定在纳米狭缝入口处的微球上的单个DNA分子。使用这种方法,我们测量了束缚DNA的力-伸长关系,并用修正的蠕虫状链模型描述了这种关系。这使得对几个理论预测进行了实验验证,包括随着限制程度的增加,受限DNA的全局持久长度增加以及狭缝限制中的“受限平卡斯”状态。