Suppr超能文献

从……根部分离、鉴定和表征砷转化外源内生菌sp. RPT

Isolation, identification and characterization of arsenic transforming exogenous endophytic sp. RPT from roots of .

作者信息

Selvankumar T, Radhika R, Mythili R, Arunprakash S, Srinivasan P, Govarthanan M, Kim Hyunook

机构信息

PG and Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu 637501 India.

Department of Botany, Arignar Anna Government Arts College, Namakkal, Tamil Nadu 637002 India.

出版信息

3 Biotech. 2017 Aug;7(4):264. doi: 10.1007/s13205-017-0901-8. Epub 2017 Jul 26.

Abstract

The aim of the present study was to assess the arsenic (As) transformation potential of endophytic bacteria isolated from roots of plant. The endophytic bacterium was tested for minimal inhibitory concentration (MIC) against As. The endophytic strain RPT exhibited the highest resistance to As(V) (400 mg/l). Phylogenetic analysis of the 16S rRNA sequence suggested that strain RPT was a member of genus . The As transformation assay revealed As(III) oxidation and As(V) reduction potential of sp. RPT. The As resistance mechanism was further confirmed by amplification of and genes. The growth kinetics of strain RPT was altered slightly in the presence of different concentration (100-400 mg/l) of As stress. Temperature and pH influenced the As removal rate. The maximum As removal was observed at pH 7.0 (74%) and 37 °C (70.9%). The results suggest that strain RPT can survive under the As stress and has been identified as a potential candidate for application in bioremediation of As in contaminated environments.

摘要

本研究的目的是评估从植物根部分离出的内生细菌的砷(As)转化潜力。对该内生细菌进行了抗砷最低抑菌浓度(MIC)测试。内生菌株RPT对五价砷(As(V))表现出最高抗性(400毫克/升)。16S rRNA序列的系统发育分析表明,菌株RPT是某属的成员。砷转化试验揭示了RPT菌的三价砷(As(III))氧化和五价砷(As(V))还原潜力。通过扩增相关基因进一步证实了其抗砷机制。在不同浓度(100 - 400毫克/升)的砷胁迫下,菌株RPT的生长动力学略有改变。温度和pH值影响砷的去除率。在pH 7.0(74%)和37°C(70.9%)时观察到最大的砷去除量。结果表明,菌株RPT能够在砷胁迫下存活,并已被确定为受污染环境中砷生物修复应用的潜在候选菌株。

相似文献

1
Isolation, identification and characterization of arsenic transforming exogenous endophytic sp. RPT from roots of .
3 Biotech. 2017 Aug;7(4):264. doi: 10.1007/s13205-017-0901-8. Epub 2017 Jul 26.
3
Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application.
J Environ Manage. 2016 Sep 15;180:359-65. doi: 10.1016/j.jenvman.2016.05.029. Epub 2016 Jun 1.
5
Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida.
Chemosphere. 2014 Oct;113:9-16. doi: 10.1016/j.chemosphere.2014.03.081. Epub 2014 May 4.
7
Bacteria-mediated arsenic oxidation and reduction in the growth media of arsenic hyperaccumulator Pteris vittata.
Environ Sci Technol. 2012 Oct 16;46(20):11259-66. doi: 10.1021/es300454b. Epub 2012 Oct 4.
8
Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species.
Ecotoxicol Environ Saf. 2020 Jun 1;195:110458. doi: 10.1016/j.ecoenv.2020.110458. Epub 2020 Mar 17.
9
Cupriavidus basilensis strain r507, a toxic arsenic phytoextraction facilitator, potentiates the arsenic accumulation by Pteris vittata.
Ecotoxicol Environ Saf. 2020 Mar 1;190:110075. doi: 10.1016/j.ecoenv.2019.110075. Epub 2019 Dec 24.
10
Arsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: Role of arsenic-resistant bacteria.
Chemosphere. 2016 Feb;144:1937-42. doi: 10.1016/j.chemosphere.2015.10.096. Epub 2015 Nov 11.

引用本文的文献

1
Perspectives of pteridophytes microbiome for bioremediation in agricultural applications.
Open Life Sci. 2024 May 31;19(1):20220870. doi: 10.1515/biol-2022-0870. eCollection 2024.
3
The effect of heavy metals on thiocyanate biodegradation by an autotrophic microbial consortium enriched from mine tailings.
Appl Microbiol Biotechnol. 2021 Jan;105(1):417-427. doi: 10.1007/s00253-020-10983-4. Epub 2020 Dec 2.
5
Arsenic efflux in Enterobacter cloacae RSN3 isolated from arsenic-rich soil.
Folia Microbiol (Praha). 2021 Apr;66(2):189-196. doi: 10.1007/s12223-020-00832-2. Epub 2020 Oct 31.
6
Production and purification of laccase by sp. using millet husks and its pesticide degradation application.
3 Biotech. 2019 Nov;9(11):396. doi: 10.1007/s13205-019-1900-8. Epub 2019 Oct 11.
7
Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils.
3 Biotech. 2018 Apr;8(4):216. doi: 10.1007/s13205-018-1237-8. Epub 2018 Apr 9.

本文引用的文献

3
Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application.
J Environ Manage. 2016 Sep 15;180:359-65. doi: 10.1016/j.jenvman.2016.05.029. Epub 2016 Jun 1.
4
Earth Abides Arsenic Biotransformations.
Annu Rev Earth Planet Sci. 2014 May 1;42:443-467. doi: 10.1146/annurev-earth-060313-054942. Epub 2014 Mar 3.
8
Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata.
Environ Pollut. 2014 Nov;194:105-111. doi: 10.1016/j.envpol.2014.07.017. Epub 2014 Aug 5.
9
A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata.
Int J Phytoremediation. 2014;16(5):429-53. doi: 10.1080/15226514.2013.798613.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验