Suppr超能文献

通过原子层沉积 AlO 薄膜对单层 MoS 进行受控气体分子掺杂。

Controlled Gas Molecules Doping of Monolayer MoS via Atomic-Layer-Deposited AlO Films.

机构信息

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education , Changchun 130024, China.

Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, China.

出版信息

ACS Appl Mater Interfaces. 2017 Aug 23;9(33):27402-27408. doi: 10.1021/acsami.7b08893. Epub 2017 Aug 15.

Abstract

MoS as atomically thin semiconductor is highly sensitive to ambient atmosphere (e.g., oxygen, moisture, etc.) in optical and electrical properties. Here we report a controlled gas molecules doping of monolayer MoS via atomic-layer-deposited AlO films. The deposited AlO films, in the shape of nanospheres, can effectively control the contact areas between ambient atmosphere and MoS that allows precise modulation of gas molecules doping. By analyzing photoluminescence (PL) emission spectra of MoS with different thickness of AlO, the doped carrier concentration is estimated at ∼2.7 × 10 cm based on the mass action model. Moreover, time-dependent PL measurements indicate an incremental stability of single layer MoS as the thicknesses of AlO capping layer increase. Effective control of gas molecules doping in monolayer MoS provides us a valuable insight into the applications of MoS based optical and electrical devices.

摘要

二硫化钼作为原子层状的半导体,对其光学和电学性能有很大影响的周围环境气氛(如氧气、水分等)高度敏感。在此,我们通过原子层沉积 AlO 薄膜报告了单层 MoS 的受控气体分子掺杂。沉积的 AlO 薄膜呈纳米球形状,可以有效地控制周围气氛与 MoS 的接触面积,从而可以精确地调节气体分子掺杂。通过分析具有不同厚度 AlO 的 MoS 的光致发光(PL)发射光谱,根据质量作用模型估计掺杂载流子浓度约为 2.7×10^12 cm^-3。此外,时间相关的 PL 测量表明,随着 AlO 盖帽层厚度的增加,单层 MoS 的稳定性逐渐提高。在单层 MoS 中对气体分子掺杂的有效控制为我们提供了一个有价值的见解,即基于 MoS 的光学和电气设备的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验