Suppr超能文献

预测二次有机气溶胶的热行为。

Predicting Thermal Behavior of Secondary Organic Aerosols.

作者信息

Offenberg John H, Lewandowski Michael, Kleindienst Tadeusz E, Docherty Kenneth S, Jaoui Mohammed, Krug Jonathan, Riedel Theran P, Olson David A

机构信息

United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States.

Jacobs Technology, Inc., Research Triangle Park, North Carolina 27709, United States.

出版信息

Environ Sci Technol. 2017 Sep 5;51(17):9911-9919. doi: 10.1021/acs.est.7b01968. Epub 2017 Aug 10.

Abstract

Volume concentrations of secondary organic aerosol (SOA) are measured in 139 steady-state, single precursor hydrocarbon oxidation experiments after passing through a temperature controlled inlet. The response to change in temperature is well predicted through a feedforward Artificial Neural Network. The most parsimonious model, as indicated by Akaike's Information Criterion, Corrected (AIC,C), utilizes 11 input variables, a single hidden layer of 4 tanh activation function nodes, and a single linear output function. This model predicts thermal behavior of single precursor aerosols to less than ±5%, which is within the measurement uncertainty, while limiting the problem of overfitting. Prediction of thermal behavior of SOA can be achieved by a concise number of descriptors of the precursor hydrocarbon including the number of internal and external double bonds, number of methyl- and ethyl- functional groups, molecular weight, and number of ring structures, in addition to the volume of SOA formed, and an indicator of which of four oxidant precursors was used to initiate reactions (NO photo-oxidation, photolysis of HO, ozonolysis, or thermal decomposition of NO). Additional input variables, such as chamber volumetric residence time, relative humidity, initial concentration of oxides of nitrogen, reacted hydrocarbon concentration, and further descriptors of the precursor hydrocarbon, including carbon number, number of oxygen atoms, and number of aromatic ring structures, lead to over fit models, and are unnecessary for an efficient, accurate predictive model of thermal behavior of SOA. This work indicates that predictive statistical modeling methods may be complementary to descriptive techniques for use in parametrization of air quality models.

摘要

在139个稳态单前驱体碳氢化合物氧化实验中,通过温度控制入口后测量二次有机气溶胶(SOA)的体积浓度。通过前馈人工神经网络可以很好地预测温度变化的响应。根据赤池信息准则校正(AIC,C),最简约的模型使用11个输入变量、一个具有4个双曲正切激活函数节点的单隐藏层和一个单线性输出函数。该模型预测单前驱体气溶胶的热行为误差小于±5%,这在测量不确定度范围内,同时限制了过拟合问题。除了形成的SOA体积以及用于引发反应的四种氧化剂前驱体中的哪一种(NO光氧化、HO光解、臭氧分解或NO热分解)的指标外,通过包括内部和外部双键数量、甲基和乙基官能团数量、分子量以及环结构数量在内的前驱体碳氢化合物的简洁描述符数量,就可以实现对SOA热行为的预测。其他输入变量,如腔室体积停留时间、相对湿度、氮氧化物初始浓度、反应后碳氢化合物浓度以及前驱体碳氢化合物的进一步描述符,包括碳原子数、氧原子数和芳环结构数量,会导致模型过拟合,对于高效、准确的SOA热行为预测模型来说是不必要的。这项工作表明,预测性统计建模方法可能与用于空气质量模型参数化的描述性技术互补。

相似文献

1
Predicting Thermal Behavior of Secondary Organic Aerosols.预测二次有机气溶胶的热行为。
Environ Sci Technol. 2017 Sep 5;51(17):9911-9919. doi: 10.1021/acs.est.7b01968. Epub 2017 Aug 10.

本文引用的文献

2
Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types.加热诱导的九种不同二次有机气溶胶类型的蒸发。
Environ Sci Technol. 2015 Oct 20;49(20):12242-52. doi: 10.1021/acs.est.5b03038. Epub 2015 Oct 1.
10
AIC model selection using Akaike weights.使用赤池权重进行AIC模型选择。
Psychon Bull Rev. 2004 Feb;11(1):192-6. doi: 10.3758/bf03206482.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验