Suppr超能文献

基于静息态 fMRI 数据集的群组脑网络推断的双重时空稀疏表示

Dual Temporal and Spatial Sparse Representation for Inferring Group-Wise Brain Networks From Resting-State fMRI Dataset.

出版信息

IEEE Trans Biomed Eng. 2018 May;65(5):1035-1048. doi: 10.1109/TBME.2017.2737785. Epub 2017 Aug 9.

Abstract

Recently, sparse representation has been successfully used to identify brain networks from task-based fMRI dataset. However, when using the strategy to analyze resting-state fMRI dataset, it is still a challenge to automatically infer the group-wise brain networks under consideration of group commonalities and subject-specific characteristics. In the paper, a novel method based on dual temporal and spatial sparse representation (DTSSR) is proposed to meet this challenge. First, the brain functional networks with subject-specific characteristics are obtained via sparse representation with online dictionary learning for the fMRI time series (temporal domain) of each subject. Next, based on the current brain science knowledge, a simple mathematical model is proposed to describe the complex nonlinear dynamic coupling mechanism of the brain networks, with which the group-wise intrinsic connectivity networks (ICNs) can be inferred by sparse representation for these brain functional networks (spatial domain) of all subjects. Experiments on Leiden_2180 dataset show that most group-wise ICNs obtained by the proposed DTSSR are interpretable by current brain science knowledge and are consistent with previous literature reports. The robustness of DTSSR and the reproducibility of the results are demonstrated by experiments on three different datasets (Leiden_2180, Leiden_2200, and our own dataset). The present work also shed new light on exploring the coupling mechanism of brain networks from perspective of information science.

摘要

最近,稀疏表示已成功用于从基于任务的 fMRI 数据集识别大脑网络。然而,在使用该策略分析静息态 fMRI 数据集时,如何在考虑组内共性和个体差异的情况下自动推断出组内大脑网络仍然是一个挑战。在本文中,提出了一种基于双时空稀疏表示(DTSSR)的新方法来应对这一挑战。首先,通过对每个个体的 fMRI 时间序列(时域)进行在线字典学习的稀疏表示,获得具有个体特征的大脑功能网络。接下来,基于当前脑科学知识,提出了一个简单的数学模型来描述大脑网络的复杂非线性动态耦合机制,通过对所有个体的这些大脑功能网络(空域)进行稀疏表示,可以推断出组内的内在连通性网络(ICN)。在 Leiden_2180 数据集上的实验表明,通过所提出的 DTSSR 获得的大多数组内 ICN 都可以用当前脑科学知识来解释,并且与之前的文献报道一致。通过在三个不同数据集(Leiden_2180、Leiden_2200 和我们自己的数据集)上的实验,验证了 DTSSR 的稳健性和结果的可重复性。本工作还从信息科学的角度揭示了探索大脑网络耦合机制的新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验