Suppr超能文献

分组功能磁共振成像信号的稀疏表示

Sparse representation of group-wise FMRI signals.

作者信息

Lv Jinglei, Li Xiang, Zhu Dajiang, Jiang Xi, Zhang Xin, Hu Xintao, Zhang Tuo, Guo Lei, Liu Tianming

机构信息

School of Automation, Northwestern Polytechnical University, Xi'an, China.

Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2013;16(Pt 3):608-16. doi: 10.1007/978-3-642-40760-4_76.

Abstract

The human brain function involves complex processes with population codes of neuronal activities. Neuroscience research has demonstrated that when representing neuronal activities, sparsity is an important characterizing property. Inspired by this finding, significant amount of efforts from the scientific communities have been recently devoted to sparse representations of signals and patterns, and promising achievements have been made. However, sparse representation of fMRI signals, particularly at the population level of a group of different brains, has been rarely explored yet. In this paper, we present a novel group-wise sparse representation of task-based fMRI signals from multiple subjects via dictionary learning methods. Specifically, we extract and pool task-based fMRI signals for a set of cortical landmarks, each of which possesses intrinsic anatomical correspondence, from a group of subjects. Then an effective online dictionary learning algorithm is employed to learn an over-complete dictionary from the pooled population of fMRI signals based on optimally determined dictionary size. Our experiments have identified meaningful Atoms of Interests (AOI) in the learned dictionary, which correspond to consistent and meaningful functional responses of the brain to external stimulus. Our work demonstrated that sparse representation of group-wise fMRI signals is naturally suitable and effective in recovering population codes of neuronal signals conveyed in fMRI data.

摘要

人类大脑功能涉及具有神经元活动群体编码的复杂过程。神经科学研究表明,在表示神经元活动时,稀疏性是一个重要的特征属性。受这一发现的启发,科学界最近投入了大量精力进行信号和模式的稀疏表示,并取得了有前景的成果。然而,功能磁共振成像(fMRI)信号的稀疏表示,尤其是在一组不同大脑的群体水平上,尚未得到充分探索。在本文中,我们通过字典学习方法提出了一种来自多个受试者的基于任务的fMRI信号的新型组稀疏表示。具体而言,我们从一组受试者中提取并汇总基于任务的fMRI信号,用于一组皮质地标,每个地标都具有内在的解剖对应关系。然后,采用一种有效的在线字典学习算法,基于最优确定的字典大小,从汇总的fMRI信号群体中学习一个超完备字典。我们的实验在学习到的字典中识别出了有意义的感兴趣原子(AOI),它们对应于大脑对外部刺激的一致且有意义的功能反应。我们的工作表明,组fMRI信号的稀疏表示在恢复fMRI数据中传达的神经元信号群体编码方面自然是合适且有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验