Suppr超能文献

一种用于检测和表征重叠疫情的贝叶斯系统。

A Bayesian system to detect and characterize overlapping outbreaks.

作者信息

Aronis John M, Millett Nicholas E, Wagner Michael M, Tsui Fuchiang, Ye Ye, Ferraro Jeffrey P, Haug Peter J, Gesteland Per H, Cooper Gregory F

机构信息

Real-time Outbreak and Disease Surveillance Laboratory, Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA.

Real-time Outbreak and Disease Surveillance Laboratory, Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

J Biomed Inform. 2017 Sep;73:171-181. doi: 10.1016/j.jbi.2017.08.003. Epub 2017 Aug 7.

Abstract

Outbreaks of infectious diseases such as influenza are a significant threat to human health. Because there are different strains of influenza which can cause independent outbreaks, and influenza can affect demographic groups at different rates and times, there is a need to recognize and characterize multiple outbreaks of influenza. This paper describes a Bayesian system that uses data from emergency department patient care reports to create epidemiological models of overlapping outbreaks of influenza. Clinical findings are extracted from patient care reports using natural language processing. These findings are analyzed by a case detection system to create disease likelihoods that are passed to a multiple outbreak detection system. We evaluated the system using real and simulated outbreaks. The results show that this approach can recognize and characterize overlapping outbreaks of influenza. We describe several extensions that appear promising.

摘要

流感等传染病的爆发对人类健康构成重大威胁。由于存在不同的流感毒株,它们可引发独立的疫情爆发,且流感会以不同的速率和时间影响不同人群,因此有必要识别和描述多次流感疫情爆发的特征。本文介绍了一种贝叶斯系统,该系统利用急诊科患者护理报告中的数据来创建流感重叠疫情爆发的流行病学模型。使用自然语言处理从患者护理报告中提取临床发现。这些发现由病例检测系统进行分析,以生成疾病可能性,并将其传递给多重疫情爆发检测系统。我们使用真实和模拟疫情爆发对该系统进行了评估。结果表明,这种方法能够识别和描述流感的重叠疫情爆发。我们还描述了几个看起来很有前景的扩展。

相似文献

1
A Bayesian system to detect and characterize overlapping outbreaks.
J Biomed Inform. 2017 Sep;73:171-181. doi: 10.1016/j.jbi.2017.08.003. Epub 2017 Aug 7.
2
A method for detecting and characterizing outbreaks of infectious disease from clinical reports.
J Biomed Inform. 2015 Feb;53:15-26. doi: 10.1016/j.jbi.2014.08.011. Epub 2014 Aug 30.
4
A Bayesian Outbreak Detection Method for Influenza-Like Illness.
Biomed Res Int. 2015;2015:751738. doi: 10.1155/2015/751738. Epub 2015 Sep 6.
5
Global Variations in Event-Based Surveillance for Disease Outbreak Detection: Time Series Analysis.
JMIR Public Health Surveill. 2022 Oct 31;8(10):e36211. doi: 10.2196/36211.
6
FluHMM: A simple and flexible Bayesian algorithm for sentinel influenza surveillance and outbreak detection.
Stat Methods Med Res. 2019 Jun;28(6):1826-1840. doi: 10.1177/0962280218776685. Epub 2018 Jun 5.
7
A Bayesian spatio-temporal approach for real-time detection of disease outbreaks: a case study.
BMC Med Inform Decis Mak. 2014 Dec 5;14:108. doi: 10.1186/s12911-014-0108-4.
8
Bayesian Markov switching models for the early detection of influenza epidemics.
Stat Med. 2008 Sep 30;27(22):4455-68. doi: 10.1002/sim.3320.
9
Multivariate Bayesian modeling of known and unknown causes of events--an application to biosurveillance.
Comput Methods Programs Biomed. 2012 Sep;107(3):436-46. doi: 10.1016/j.cmpb.2010.11.015. Epub 2010 Dec 31.
10
A Bayesian inferential approach to quantify the transmission intensity of disease outbreak.
Comput Math Methods Med. 2015;2015:256319. doi: 10.1155/2015/256319. Epub 2015 Feb 15.

引用本文的文献

2
Dynamic graph and polynomial chaos based models for contact tracing data analysis and optimal testing prescription.
J Biomed Inform. 2021 Oct;122:103901. doi: 10.1016/j.jbi.2021.103901. Epub 2021 Aug 30.
3
Multi-step ahead meningitis case forecasting based on decomposition and multi-objective optimization methods.
J Biomed Inform. 2020 Nov;111:103575. doi: 10.1016/j.jbi.2020.103575. Epub 2020 Sep 22.

本文引用的文献

1
A study of the transferability of influenza case detection systems between two large healthcare systems.
PLoS One. 2017 Apr 5;12(4):e0174970. doi: 10.1371/journal.pone.0174970. eCollection 2017.
2
A method for detecting and characterizing outbreaks of infectious disease from clinical reports.
J Biomed Inform. 2015 Feb;53:15-26. doi: 10.1016/j.jbi.2014.08.011. Epub 2014 Aug 30.
3
Probabilistic, Decision-theoretic Disease Surveillance and Control.
Online J Public Health Inform. 2011;3(3). doi: 10.5210/ojphi.v3i3.3798. Epub 2011 Dec 22.
4
Probabilistic case detection for disease surveillance using data in electronic medical records.
Online J Public Health Inform. 2011;3(3). doi: 10.5210/ojphi.v3i3.3793. Epub 2011 Dec 22.
5
Forecasting seasonal outbreaks of influenza.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20425-30. doi: 10.1073/pnas.1208772109. Epub 2012 Nov 26.
6
Prevalence of seropositivity to pandemic influenza A/H1N1 virus in the United States following the 2009 pandemic.
PLoS One. 2012;7(10):e48187. doi: 10.1371/journal.pone.0048187. Epub 2012 Oct 31.
7
Comparison of natural language processing biosurveillance methods for identifying influenza from encounter notes.
Ann Intern Med. 2012 Jan 3;156(1 Pt 1):11-8. doi: 10.7326/0003-4819-156-1-201201030-00003.
8
Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza.
Math Biosci Eng. 2011 Jan;8(1):141-70. doi: 10.3934/mbe.2011.8.141.
10
Absolute humidity and the seasonal onset of influenza in the continental United States.
PLoS Biol. 2010 Feb 23;8(2):e1000316. doi: 10.1371/journal.pbio.1000316.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验