Ndour Papa M S, Gueye Mariama, Barakat Mohamed, Ortet Philippe, Bertrand-Huleux Marie, Pablo Anne-Laure, Dezette Damien, Chapuis-Lardy Lydie, Assigbetsé Komi, Kane Ndjido Ardo, Vigouroux Yves, Achouak Wafa, Ndoye Ibrahima, Heulin Thierry, Cournac Laurent
IRD, UMR Eco&Sols, LMI IESOL, Centre de recherche ISRA-IRDDakar, Sénégal.
Département de Biologie Végétale, Université Cheikh Anta DiopDakar, Sénégal.
Front Plant Sci. 2017 Jul 27;8:1288. doi: 10.3389/fpls.2017.01288. eCollection 2017.
Root exudation contributes to soil carbon allocation and also to microbial C and energy supply, which subsequently impacts soil aggregation around roots. Biologically-driven soil structural formation is an important driver of soil fertility. Plant genetic determinants of exudation and more generally of factors promoting rhizosphere soil aggregation are largely unknown. Here, we characterized rhizosphere aggregation in a panel of 86 pearl millet inbred lines using a ratio of root-adhering soil dry mass per root tissue dry mass (RAS/RT). This ratio showed significant variations between lines, with a roughly 2-fold amplitude between lowest and highest average values. For 9 lines with contrasting aggregation properties, we then compared the bacterial diversity and composition in root-adhering soil. Bacterial α-diversity metrics increased with the "RAS/RT ratio." Regarding taxonomic composition, the were stimulated in lines showing high aggregation level whereas were more abundant in lines with low ratio. 184 strains of cultivable exopolysaccharides-producing bacteria have been isolated from the rhizosphere of some lines, including members from and . However, at this stage, we could not find a correlation between abundance of EPS-producing species in bacterial communities and the ratio RAS/RT. These results illustrated the impact of cereals genetic trait variation on soil physical properties and microbial diversity. This opens the possibility of considering plant breeding to help management of soil carbon content and physical characteristics through carbon rhizodeposition in soil.
根系分泌物有助于土壤碳分配,也有助于微生物的碳和能量供应,进而影响根际周围的土壤团聚。生物驱动的土壤结构形成是土壤肥力的重要驱动因素。根系分泌物以及更普遍地促进根际土壤团聚的因素的植物遗传决定因素在很大程度上尚不清楚。在这里,我们使用根附着土壤干质量与根组织干质量的比率(RAS/RT)对86个珍珠粟自交系的根际团聚进行了表征。该比率在不同品系间表现出显著差异,最低和最高平均值之间的幅度约为2倍。对于9个具有不同团聚特性的品系,我们随后比较了根附着土壤中的细菌多样性和组成。细菌α多样性指标随“RAS/RT比率”增加。关于分类组成,在表现出高团聚水平的品系中 受到刺激,而在比率低的品系中 更为丰富。已从一些品系的根际分离出184株可培养的产胞外多糖细菌菌株,包括来自 和 的成员。然而,在这个阶段,我们未能发现细菌群落中产EPS物种的丰度与RAS/RT比率之间的相关性。这些结果说明了谷物遗传性状变异对土壤物理性质和微生物多样性的影响。这为通过土壤中的碳根际沉积考虑植物育种以帮助管理土壤碳含量和物理特性开辟了可能性。