Suppr超能文献

基于逆电渗析的纳米流体制热能转换的温度依赖性。

Thermal dependence of nanofluidic energy conversion by reverse electrodialysis.

机构信息

Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

出版信息

Nanoscale. 2017 Aug 24;9(33):12068-12076. doi: 10.1039/c7nr04387b.

Abstract

The thermal dependence of salinity-gradient-driven energy conversion by reverse electrodialysis using a mesoporous silica thin film with pores ca. 2-3 nm in diameter was studied in a temperature range of 293-333 K. As the temperature increases, the surface charge density of mesopores increases owing to an increase in the zeta potential of the pore walls, which in turn increases the concentration of counter-ions in the electrical double layer. The ion mobility also increases with increasing temperature owing to a decrease in the liquid viscosity. As a result, the temperature increase improves the ion conductance of mesopores both in the surface-charge-governed regime at low ion concentrations and in the bulk regime at high ion concentrations. However, further increases in temperature induce bubble nucleation. In particular, in highly concentrated salt solutions, hydrophobic patches appear on the pore surfaces because of the salting-out effect and mask the surface charge. The weakened polarity in mesopores allows more co-ions to enter them, decreasing the potential difference across the film, resulting in a serious deterioration of the energy conversion efficiency. The thermal dependence of the performance characteristics of mesoporous-silica-based nanofluidic devices was also evaluated.

摘要

采用孔径约为 2-3nm 的介孔硅薄膜,研究了温度范围为 293-333 K 时盐度梯度驱动的反向电渗析能量转换的热依赖性。随着温度的升高,由于孔壁的动电位增加,介孔的表面电荷密度增加,这反过来又增加了双电层中反离子的浓度。由于液体粘度降低,离子迁移率也随温度升高而增加。因此,温度升高改善了介孔在低离子浓度下的表面电荷控制区和高离子浓度下的体相区的离子电导率。然而,进一步提高温度会引发气泡成核。特别是在高浓度盐溶液中,由于盐析效应,孔表面会出现疏水区,掩盖了表面电荷。介孔极性的减弱使得更多的共离子进入其中,减小了膜两侧的电位差,导致能量转换效率严重恶化。还评估了基于介孔硅的纳米流控器件性能特性的热依赖性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验