Long Rui, Kuang Zhengfei, Liu Zhichun, Liu Wei
School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Natl Sci Rev. 2019 Nov;6(6):1266-1273. doi: 10.1093/nsr/nwz106. Epub 2019 Jul 30.
Advances in nanofabrication and materials science give a boost to the research in nanofluidic energy harvesting. Contrary to previous efforts on isothermal conditions, here a study on asymmetric temperature dependence in nanofluidic power generation is conducted. Results are somewhat counterintuitive. A negative temperature difference can significantly improve the membrane potential due to the impact of ionic thermal up-diffusion that promotes the selectivity and suppresses the ion-concentration polarization, especially at the low-concentration side, which results in dramatically enhanced electric power. A positive temperature difference lowers the membrane potential due to the impact of ionic thermal down-diffusion, although it promotes the diffusion current induced by decreased electrical resistance. Originating from the compromise of the temperature-impacted membrane potential and diffusion current, a positive temperature difference enhances the power at low transmembrane-concentration intensities and hinders the power for high transmembrane-concentration intensities. Based on the system's temperature response, we have proposed a simple and efficient way to fabricate tunable ionic voltage sources and enhance salinity-gradient energy conversion based on small nanoscale biochannels and mimetic nanochannels. These findings reveal the importance of a long-overlooked element-temperature-in nanofluidic energy harvesting and provide insights for the optimization and fabrication of high-performance nanofluidic power devices.
纳米制造和材料科学的进展推动了纳米流体能量收集的研究。与之前在等温条件下所做的努力不同,本文对纳米流体发电中的不对称温度依赖性进行了研究。结果有些出人意料。负温差可因离子热向上扩散的影响而显著提高膜电位,这种扩散促进了选择性并抑制了离子浓度极化,特别是在低浓度侧,从而导致电力大幅增强。正温差则由于离子热向下扩散的影响而降低膜电位,尽管它促进了因电阻降低而产生的扩散电流。由于受温度影响的膜电位和扩散电流之间的相互作用,正温差在低跨膜浓度强度下提高了功率,而在高跨膜浓度强度下则阻碍了功率。基于该系统的温度响应,我们提出了一种简单有效的方法,用于制造可调谐离子电压源,并基于小型纳米级生物通道和模拟纳米通道增强盐度梯度能量转换。这些发现揭示了纳米流体能量收集中一个长期被忽视的因素——温度的重要性,并为高性能纳米流体发电装置的优化和制造提供了思路。