Suppr超能文献

用于纳米流体盐度梯度能量收集的离子热向上扩散

Ionic thermal up-diffusion in nanofluidic salinity-gradient energy harvesting.

作者信息

Long Rui, Kuang Zhengfei, Liu Zhichun, Liu Wei

机构信息

School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Natl Sci Rev. 2019 Nov;6(6):1266-1273. doi: 10.1093/nsr/nwz106. Epub 2019 Jul 30.

Abstract

Advances in nanofabrication and materials science give a boost to the research in nanofluidic energy harvesting. Contrary to previous efforts on isothermal conditions, here a study on asymmetric temperature dependence in nanofluidic power generation is conducted. Results are somewhat counterintuitive. A negative temperature difference can significantly improve the membrane potential due to the impact of ionic thermal up-diffusion that promotes the selectivity and suppresses the ion-concentration polarization, especially at the low-concentration side, which results in dramatically enhanced electric power. A positive temperature difference lowers the membrane potential due to the impact of ionic thermal down-diffusion, although it promotes the diffusion current induced by decreased electrical resistance. Originating from the compromise of the temperature-impacted membrane potential and diffusion current, a positive temperature difference enhances the power at low transmembrane-concentration intensities and hinders the power for high transmembrane-concentration intensities. Based on the system's temperature response, we have proposed a simple and efficient way to fabricate tunable ionic voltage sources and enhance salinity-gradient energy conversion based on small nanoscale biochannels and mimetic nanochannels. These findings reveal the importance of a long-overlooked element-temperature-in nanofluidic energy harvesting and provide insights for the optimization and fabrication of high-performance nanofluidic power devices.

摘要

纳米制造和材料科学的进展推动了纳米流体能量收集的研究。与之前在等温条件下所做的努力不同,本文对纳米流体发电中的不对称温度依赖性进行了研究。结果有些出人意料。负温差可因离子热向上扩散的影响而显著提高膜电位,这种扩散促进了选择性并抑制了离子浓度极化,特别是在低浓度侧,从而导致电力大幅增强。正温差则由于离子热向下扩散的影响而降低膜电位,尽管它促进了因电阻降低而产生的扩散电流。由于受温度影响的膜电位和扩散电流之间的相互作用,正温差在低跨膜浓度强度下提高了功率,而在高跨膜浓度强度下则阻碍了功率。基于该系统的温度响应,我们提出了一种简单有效的方法,用于制造可调谐离子电压源,并基于小型纳米级生物通道和模拟纳米通道增强盐度梯度能量转换。这些发现揭示了纳米流体能量收集中一个长期被忽视的因素——温度的重要性,并为高性能纳米流体发电装置的优化和制造提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c72/8291421/cad331d9075e/nwz106fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验