Suppr超能文献

异常的pH依赖型纳米流体盐度梯度功率。

Anomalous pH-Dependent Nanofluidic Salinity Gradient Power.

作者信息

Yeh Li-Hsien, Chen Fu, Chiou Yu-Ting, Su Yen-Shao

机构信息

Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan.

出版信息

Small. 2017 Dec;13(48). doi: 10.1002/smll.201702691. Epub 2017 Oct 24.

Abstract

Previous studies on nanofluidic salinity gradient power (NSGP), where energy associated with the salinity gradient can be harvested with ion-selective nanopores, all suggest that nanofluidic devices having higher surface charge density should have higher performance, including osmotic power and conversion efficiency. In this manuscript, this viewpoint is challenged and anomalous counterintuitive pH-dependent NSGP behaviors are reported. For example, with equal pH deviation from its isoelectric point (IEP), the nanopore at pH < IEP is shown to have smaller surface charge density but remarkably higher NSGP performance than that at pH > IEP. Moreover, for sufficiently low pH, the NSGP performance decreases with lowering pH (increasing nanopore charge density). As a result, a maximum osmotic power density as high as 5.85 kW m can be generated along with a conversion efficiency of 26.3% achieved for a single alumina nanopore at pH 3.5 under a 1000-fold concentration ratio. Using the rigorous model with considering the surface equilibrium reactions on the pore wall, it is proved that these counterintuitive surface-charge-dependent NSGP behaviors result from the pH-dependent ion concentration polarization effect, which yields the degradation in effective concentration ratio across the nanopore. These findings provide significant insight for the design of next-generation, high-performance NSGP devices.

摘要

先前关于纳米流体盐度梯度发电(NSGP)的研究表明,利用离子选择性纳米孔可以获取与盐度梯度相关的能量,所有这些研究都表明,具有较高表面电荷密度的纳米流体装置应具有更高的性能,包括渗透功率和转换效率。在本论文中,这一观点受到了挑战,并报道了反常的、违反直觉的pH依赖型NSGP行为。例如,在与等电点(IEP)的pH偏差相等的情况下,pH < IEP时的纳米孔表面电荷密度较小,但NSGP性能却显著高于pH > IEP时的纳米孔。此外,在足够低的pH值下,NSGP性能会随着pH值的降低(纳米孔电荷密度增加)而降低。结果,在1000倍浓度比下,对于pH为3.5的单个氧化铝纳米孔,可产生高达5.85 kW m的最大渗透功率密度,同时实现26.3%的转换效率。通过考虑孔壁上表面平衡反应的严格模型,证明了这些违反直觉的表面电荷依赖型NSGP行为是由pH依赖的离子浓度极化效应导致的,该效应导致纳米孔两端有效浓度比下降。这些发现为下一代高性能NSGP装置的设计提供了重要的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验