Lee Nicholas C O, Kim Jung-Hyun, Petrov Nikolai S, Lee Hee-Sheung, Masumoto Hiroshi, Earnshaw William C, Larionov Vladimir, Kouprina Natalay
Developmental Therapeutics Branch, National Cancer Institute , Bethesda, Maryland 20892, United States.
Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute , 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan.
ACS Synth Biol. 2018 Jan 19;7(1):63-74. doi: 10.1021/acssynbio.7b00209. Epub 2017 Aug 24.
The production of cells capable of carrying multiple transgenes to Mb-size genomic loci has multiple applications in biomedicine and biotechnology. In order to achieve this goal, three key steps are required: (i) cloning of large genomic segments; (ii) insertion of multiple DNA blocks at a precise location and (iii) the capability to eliminate the assembled region from cells. In this study, we designed the iterative integration system (IIS) that utilizes recombinases Cre, ΦC31 and ΦBT1, and combined it with a human artificial chromosome (HAC) possessing a regulated kinetochore (alphoid-HAC). We have demonstrated that the IIS-alphoid-HAC system is a valuable genetic tool by reassembling a functional gene from multiple segments on the HAC. IIS-alphoid-HAC has several notable advantages over other artificial chromosome-based systems. This includes the potential to assemble an unlimited number of genomic DNA segments; a DNA assembly process that leaves only a small insertion (<60 bp) scar between adjacent DNA, allowing genes reassembled from segments to be spliced correctly; a marker exchange system that also changes cell color, and counter-selection markers at each DNA insertion step, simplifying selection of correct clones; and presence of an error proofing mechanism to remove cells with misincorporated DNA segments, which improves the integrity of assembly. In addition, the IIS-alphoid-HAC carrying a locus of interest is removable, offering the unique possibility to revert the cell line to its pretransformed state and compare the phenotypes of human cells with and without a functional copy of a gene(s). Thus, IIS-alphoid-HAC allows investigation of complex biomedical pathways, gene(s) regulation, and has the potential to engineer synthetic chromosomes with a predetermined set of genes.
能够携带多个转基因至兆碱基大小基因组位点的细胞生产在生物医学和生物技术领域有多种应用。为实现这一目标,需要三个关键步骤:(i)克隆大基因组片段;(ii)在精确位置插入多个DNA片段;以及(iii)从细胞中消除组装区域的能力。在本研究中,我们设计了利用重组酶Cre、ΦC31和ΦBT1的迭代整合系统(IIS),并将其与具有调控动粒的人类人工染色体(alphoid-HAC)相结合。我们通过在HAC上从多个片段重新组装一个功能基因,证明了IIS-alphoid-HAC系统是一种有价值的遗传工具。IIS-alphoid-HAC相对于其他基于人工染色体的系统有几个显著优势。这包括组装无限数量基因组DNA片段的潜力;DNA组装过程在相邻DNA之间仅留下小的插入(<60 bp)疤痕,使从片段重新组装的基因能够正确拼接;一个也能改变细胞颜色的标记交换系统,以及每个DNA插入步骤的反选择标记,简化了正确克隆的选择;还有一个错误校正机制来去除含有错误掺入DNA片段的细胞,这提高了组装的完整性。此外,携带感兴趣位点的IIS-alphoid-HAC是可移除的,提供了将细胞系恢复到其转化前状态并比较有和没有一个或多个基因功能拷贝的人类细胞表型的独特可能性。因此,IIS-alphoid-HAC允许研究复杂的生物医学途径、基因调控,并有潜力构建具有预定基因集的合成染色体。