Schröder Simon, Wagenpfeil Stefan, Leydolt Christina, Menapace Rupert, Langenbucher Achim
Experimentelle Ophthalmologie, Universität des Saarlandes, Homburg/Saar.
Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Universität des Saarlandes, Homburg/Saar.
Klin Monbl Augenheilkd. 2017 Aug;234(8):975-978. doi: 10.1055/s-0043-110569. Epub 2017 Aug 11.
The Haigis formula uses a linear regression with three IOL constants for the prediction of the effective lens position (ELP) of the intraocular lens (IOL), ELP ≈ a + a ACD + a L. It is based on the preoperative anterior chamber depth (ACD) and axial length (L). Differences between IOL constant triplets can be judged based on their statistical measurement uncertainty. To investigate, if the estimation of the average ELP with the help of the average ACD and average L according to 〈ELP〉 ≈ a + a 〈ACD〉 + a 〈L〉 provides a possible alternative, we have compared both methods. The results based on two different strategies for optimisation of the IOL constants a, a, a are used for illustration. The estimation of the average ELP is suitable for basic categorisation of the IOL constants. The confidence-volumes in shape of ellipsoids based on the statistical measurement uncertainties of the IOL constant optimisations allow a better comparison between IOL constant triplets a, a, a.
海吉斯公式使用带有三个人工晶状体常数的线性回归来预测人工晶状体(IOL)的有效晶状体位置(ELP),即ELP ≈ a + a ACD + a L。它基于术前前房深度(ACD)和眼轴长度(L)。可以根据人工晶状体常数三元组的统计测量不确定性来判断它们之间的差异。为了研究根据〈ELP〉≈ a + a 〈ACD〉+ a 〈L〉,借助平均ACD和平均L对平均ELP进行估计是否提供了一种可能的替代方法,我们对这两种方法进行了比较。基于两种不同的优化人工晶状体常数a、a、a的策略得出的结果用于说明。平均ELP的估计适用于人工晶状体常数的基本分类。基于人工晶状体常数优化的统计测量不确定性的椭球形置信体积允许对人工晶状体常数三元组a、a、a进行更好的比较。